summaryrefslogtreecommitdiff
path: root/libm/ldouble/README.txt
blob: 30fcaad366eb1e8676701c1ffc18c31d374d6e1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
/*							acoshl.c
 *
 *	Inverse hyperbolic cosine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, acoshl();
 *
 * y = acoshl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns inverse hyperbolic cosine of argument.
 *
 * If 1 <= x < 1.5, a rational approximation
 *
 *	sqrt(2z) * P(z)/Q(z)
 *
 * where z = x-1, is used.  Otherwise,
 *
 * acosh(x)  =  log( x + sqrt( (x-1)(x+1) ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      1,3         30000       2.0e-19     3.9e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * acoshl domain      |x| < 1            0.0
 *
 */

/*							asinhl.c
 *
 *	Inverse hyperbolic sine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, asinhl();
 *
 * y = asinhl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns inverse hyperbolic sine of argument.
 *
 * If |x| < 0.5, the function is approximated by a rational
 * form  x + x**3 P(x)/Q(x).  Otherwise,
 *
 *     asinh(x) = log( x + sqrt(1 + x*x) ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -3,3         30000       1.7e-19     3.5e-20
 *
 */

/*							asinl.c
 *
 *	Inverse circular sine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, asinl();
 *
 * y = asinl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
 *
 * A rational function of the form x + x**3 P(x**2)/Q(x**2)
 * is used for |x| in the interval [0, 0.5].  If |x| > 0.5 it is
 * transformed by the identity
 *
 *    asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -1, 1        30000       2.7e-19     4.8e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * asin domain        |x| > 1           0.0
 *
 */
/*							acosl()
 *
 *	Inverse circular cosine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, acosl();
 *
 * y = acosl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle between -pi/2 and +pi/2 whose cosine
 * is x.
 *
 * Analytically, acos(x) = pi/2 - asin(x).  However if |x| is
 * near 1, there is cancellation error in subtracting asin(x)
 * from pi/2.  Hence if x < -0.5,
 *
 *    acos(x) =	 pi - 2.0 * asin( sqrt((1+x)/2) );
 *
 * or if x > +0.5,
 *
 *    acos(x) =	 2.0 * asin(  sqrt((1-x)/2) ).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -1, 1       30000       1.4e-19     3.5e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * asin domain        |x| > 1           0.0
 */

/*							atanhl.c
 *
 *	Inverse hyperbolic tangent, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, atanhl();
 *
 * y = atanhl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns inverse hyperbolic tangent of argument in the range
 * MINLOGL to MAXLOGL.
 *
 * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
 * employed.  Otherwise,
 *        atanh(x) = 0.5 * log( (1+x)/(1-x) ).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -1,1        30000       1.1e-19     3.3e-20
 *
 */

/*							atanl.c
 *
 *	Inverse circular tangent, long double precision
 *      (arctangent)
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, atanl();
 *
 * y = atanl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle between -pi/2 and +pi/2 whose tangent
 * is x.
 *
 * Range reduction is from four intervals into the interval
 * from zero to  tan( pi/8 ).  The approximant uses a rational
 * function of degree 3/4 of the form x + x**3 P(x)/Q(x).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -10, 10    150000       1.3e-19     3.0e-20
 *
 */
/*							atan2l()
 *
 *	Quadrant correct inverse circular tangent,
 *	long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, z, atan2l();
 *
 * z = atan2l( y, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle whose tangent is y/x.
 * Define compile time symbol ANSIC = 1 for ANSI standard,
 * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
 * 0 to 2PI, args (x,y).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -10, 10     60000       1.7e-19     3.2e-20
 * See atan.c.
 *
 */

/*							bdtrl.c
 *
 *	Binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * long double p, y, bdtrl();
 *
 * y = bdtrl( k, n, p );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms 0 through k of the Binomial
 * probability density:
 *
 *   k
 *   --  ( n )   j      n-j
 *   >   (   )  p  (1-p)
 *   --  ( j )
 *  j=0
 *
 * The terms are not summed directly; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random points (k,n,p) with a and b between 0
 * and 10000 and p between 0 and 1.
 *    Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,10000      3000       1.6e-14     2.2e-15
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtrl domain        k < 0            0.0
 *                     n < k
 *                     x < 0, x > 1
 *
 */
/*							bdtrcl()
 *
 *	Complemented binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * long double p, y, bdtrcl();
 *
 * y = bdtrcl( k, n, p );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms k+1 through n of the Binomial
 * probability density:
 *
 *   n
 *   --  ( n )   j      n-j
 *   >   (   )  p  (1-p)
 *   --  ( j )
 *  j=k+1
 *
 * The terms are not summed directly; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 *
 *
 * ACCURACY:
 *
 * See incbet.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtrcl domain     x<0, x>1, n<k       0.0
 */
/*							bdtril()
 *
 *	Inverse binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * long double p, y, bdtril();
 *
 * p = bdtril( k, n, y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Finds the event probability p such that the sum of the
 * terms 0 through k of the Binomial probability density
 * is equal to the given cumulative probability y.
 *
 * This is accomplished using the inverse beta integral
 * function and the relation
 *
 * 1 - p = incbi( n-k, k+1, y ).
 *
 * ACCURACY:
 *
 * See incbi.c.
 * Tested at random k, n between 1 and 10000.  The "domain" refers to p:
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,1        3500       2.0e-15     8.2e-17
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtril domain     k < 0, n <= k         0.0
 *                  x < 0, x > 1
 */


/*							btdtrl.c
 *
 *	Beta distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * long double a, b, x, y, btdtrl();
 *
 * y = btdtrl( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area from zero to x under the beta density
 * function:
 *
 *
 *                          x
 *            -             -
 *           | (a+b)       | |  a-1      b-1
 * P(x)  =  ----------     |   t    (1-t)    dt
 *           -     -     | |
 *          | (a) | (b)   -
 *                         0
 *
 *
 * The mean value of this distribution is a/(a+b).  The variance
 * is ab/[(a+b)^2 (a+b+1)].
 *
 * This function is identical to the incomplete beta integral
 * function, incbetl(a, b, x).
 *
 * The complemented function is
 *
 * 1 - P(1-x)  =  incbetl( b, a, x );
 *
 *
 * ACCURACY:
 *
 * See incbetl.c.
 *
 */

/*							cbrtl.c
 *
 *	Cube root, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, cbrtl();
 *
 * y = cbrtl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the cube root of the argument, which may be negative.
 *
 * Range reduction involves determining the power of 2 of
 * the argument.  A polynomial of degree 2 applied to the
 * mantissa, and multiplication by the cube root of 1, 2, or 4
 * approximates the root to within about 0.1%.  Then Newton's
 * iteration is used three times to converge to an accurate
 * result.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     .125,8        80000      7.0e-20     2.2e-20
 *    IEEE    exp(+-707)    100000      7.0e-20     2.4e-20
 *
 */

/*							chdtrl.c
 *
 *	Chi-square distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * long double df, x, y, chdtrl();
 *
 * y = chdtrl( df, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area under the left hand tail (from 0 to x)
 * of the Chi square probability density function with
 * v degrees of freedom.
 *
 *
 *                                  inf.
 *                                    -
 *                        1          | |  v/2-1  -t/2
 *  P( x | v )   =   -----------     |   t      e     dt
 *                    v/2  -       | |
 *                   2    | (v/2)   -
 *                                   x
 *
 * where x is the Chi-square variable.
 *
 * The incomplete gamma integral is used, according to the
 * formula
 *
 *	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
 *
 *
 * The arguments must both be positive.
 *
 *
 *
 * ACCURACY:
 *
 * See igam().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * chdtr domain   x < 0 or v < 1        0.0
 */
/*							chdtrcl()
 *
 *	Complemented Chi-square distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * long double v, x, y, chdtrcl();
 *
 * y = chdtrcl( v, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area under the right hand tail (from x to
 * infinity) of the Chi square probability density function
 * with v degrees of freedom:
 *
 *
 *                                  inf.
 *                                    -
 *                        1          | |  v/2-1  -t/2
 *  P( x | v )   =   -----------     |   t      e     dt
 *                    v/2  -       | |
 *                   2    | (v/2)   -
 *                                   x
 *
 * where x is the Chi-square variable.
 *
 * The incomplete gamma integral is used, according to the
 * formula
 *
 *	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
 *
 *
 * The arguments must both be positive.
 *
 *
 *
 * ACCURACY:
 *
 * See igamc().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * chdtrc domain  x < 0 or v < 1        0.0
 */
/*							chdtril()
 *
 *	Inverse of complemented Chi-square distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * long double df, x, y, chdtril();
 *
 * x = chdtril( df, y );
 *
 *
 *
 *
 * DESCRIPTION:
 *
 * Finds the Chi-square argument x such that the integral
 * from x to infinity of the Chi-square density is equal
 * to the given cumulative probability y.
 *
 * This is accomplished using the inverse gamma integral
 * function and the relation
 *
 *    x/2 = igami( df/2, y );
 *
 *
 *
 *
 * ACCURACY:
 *
 * See igami.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * chdtri domain   y < 0 or y > 1        0.0
 *                     v < 1
 *
 */

/*							clogl.c
 *
 *	Complex natural logarithm
 *
 *
 *
 * SYNOPSIS:
 *
 * void clogl();
 * cmplxl z, w;
 *
 * clogl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns complex logarithm to the base e (2.718...) of
 * the complex argument x.
 *
 * If z = x + iy, r = sqrt( x**2 + y**2 ),
 * then
 *       w = log(r) + i arctan(y/x).
 * 
 * The arctangent ranges from -PI to +PI.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      7000       8.5e-17     1.9e-17
 *    IEEE      -10,+10     30000       5.0e-15     1.1e-16
 *
 * Larger relative error can be observed for z near 1 +i0.
 * In IEEE arithmetic the peak absolute error is 5.2e-16, rms
 * absolute error 1.0e-16.
 */

/*							cexpl()
 *
 *	Complex exponential function
 *
 *
 *
 * SYNOPSIS:
 *
 * void cexpl();
 * cmplxl z, w;
 *
 * cexpl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the exponential of the complex argument z
 * into the complex result w.
 *
 * If
 *     z = x + iy,
 *     r = exp(x),
 *
 * then
 *
 *     w = r cos y + i r sin y.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      8700       3.7e-17     1.1e-17
 *    IEEE      -10,+10     30000       3.0e-16     8.7e-17
 *
 */
/*							csinl()
 *
 *	Complex circular sine
 *
 *
 *
 * SYNOPSIS:
 *
 * void csinl();
 * cmplxl z, w;
 *
 * csinl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *     w = sin x  cosh y  +  i cos x sinh y.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      8400       5.3e-17     1.3e-17
 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16
 * Also tested by csin(casin(z)) = z.
 *
 */
/*							ccosl()
 *
 *	Complex circular cosine
 *
 *
 *
 * SYNOPSIS:
 *
 * void ccosl();
 * cmplxl z, w;
 *
 * ccosl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *     w = cos x  cosh y  -  i sin x sinh y.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      8400       4.5e-17     1.3e-17
 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16
 */
/*							ctanl()
 *
 *	Complex circular tangent
 *
 *
 *
 * SYNOPSIS:
 *
 * void ctanl();
 * cmplxl z, w;
 *
 * ctanl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *           sin 2x  +  i sinh 2y
 *     w  =  --------------------.
 *            cos 2x  +  cosh 2y
 *
 * On the real axis the denominator is zero at odd multiples
 * of PI/2.  The denominator is evaluated by its Taylor
 * series near these points.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      5200       7.1e-17     1.6e-17
 *    IEEE      -10,+10     30000       7.2e-16     1.2e-16
 * Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
 */
/*							ccotl()
 *
 *	Complex circular cotangent
 *
 *
 *
 * SYNOPSIS:
 *
 * void ccotl();
 * cmplxl z, w;
 *
 * ccotl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *
 *           sin 2x  -  i sinh 2y
 *     w  =  --------------------.
 *            cosh 2y  -  cos 2x
 *
 * On the real axis, the denominator has zeros at even
 * multiples of PI/2.  Near these points it is evaluated
 * by a Taylor series.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      3000       6.5e-17     1.6e-17
 *    IEEE      -10,+10     30000       9.2e-16     1.2e-16
 * Also tested by ctan * ccot = 1 + i0.
 */

/*							casinl()
 *
 *	Complex circular arc sine
 *
 *
 *
 * SYNOPSIS:
 *
 * void casinl();
 * cmplxl z, w;
 *
 * casinl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * Inverse complex sine:
 *
 *                               2
 * w = -i clog( iz + csqrt( 1 - z ) ).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10     10100       2.1e-15     3.4e-16
 *    IEEE      -10,+10     30000       2.2e-14     2.7e-15
 * Larger relative error can be observed for z near zero.
 * Also tested by csin(casin(z)) = z.
 */
/*							cacosl()
 *
 *	Complex circular arc cosine
 *
 *
 *
 * SYNOPSIS:
 *
 * void cacosl();
 * cmplxl z, w;
 *
 * cacosl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * w = arccos z  =  PI/2 - arcsin z.
 *
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      5200      1.6e-15      2.8e-16
 *    IEEE      -10,+10     30000      1.8e-14      2.2e-15
 */

/*							catanl()
 *
 *	Complex circular arc tangent
 *
 *
 *
 * SYNOPSIS:
 *
 * void catanl();
 * cmplxl z, w;
 *
 * catanl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 * If
 *     z = x + iy,
 *
 * then
 *          1       (    2x     )
 * Re w  =  - arctan(-----------)  +  k PI
 *          2       (     2    2)
 *                  (1 - x  - y )
 *
 *               ( 2         2)
 *          1    (x  +  (y+1) )
 * Im w  =  - log(------------)
 *          4    ( 2         2)
 *               (x  +  (y-1) )
 *
 * Where k is an arbitrary integer.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10      5900       1.3e-16     7.8e-18
 *    IEEE      -10,+10     30000       2.3e-15     8.5e-17
 * The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
 * had peak relative error 1.5e-16, rms relative error
 * 2.9e-17.  See also clog().
 */

/*							cmplxl.c
 *
 *	Complex number arithmetic
 *
 *
 *
 * SYNOPSIS:
 *
 * typedef struct {
 *      long double r;     real part
 *      long double i;     imaginary part
 *     }cmplxl;
 *
 * cmplxl *a, *b, *c;
 *
 * caddl( a, b, c );     c = b + a
 * csubl( a, b, c );     c = b - a
 * cmull( a, b, c );     c = b * a
 * cdivl( a, b, c );     c = b / a
 * cnegl( c );           c = -c
 * cmovl( b, c );        c = b
 *
 *
 *
 * DESCRIPTION:
 *
 * Addition:
 *    c.r  =  b.r + a.r
 *    c.i  =  b.i + a.i
 *
 * Subtraction:
 *    c.r  =  b.r - a.r
 *    c.i  =  b.i - a.i
 *
 * Multiplication:
 *    c.r  =  b.r * a.r  -  b.i * a.i
 *    c.i  =  b.r * a.i  +  b.i * a.r
 *
 * Division:
 *    d    =  a.r * a.r  +  a.i * a.i
 *    c.r  = (b.r * a.r  + b.i * a.i)/d
 *    c.i  = (b.i * a.r  -  b.r * a.i)/d
 * ACCURACY:
 *
 * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
 * error 3.1e-17, rms 1.2e-17.  The test (y/z) * (z/y) = 1 had
 * peak relative error 8.3e-17, rms 2.1e-17.
 *
 * Tests in the rectangle {-10,+10}:
 *                      Relative error:
 * arithmetic   function  # trials      peak         rms
 *    DEC        cadd       10000       1.4e-17     3.4e-18
 *    IEEE       cadd      100000       1.1e-16     2.7e-17
 *    DEC        csub       10000       1.4e-17     4.5e-18
 *    IEEE       csub      100000       1.1e-16     3.4e-17
 *    DEC        cmul        3000       2.3e-17     8.7e-18
 *    IEEE       cmul      100000       2.1e-16     6.9e-17
 *    DEC        cdiv       18000       4.9e-17     1.3e-17
 *    IEEE       cdiv      100000       3.7e-16     1.1e-16
 */

/*							cabsl()
 *
 *	Complex absolute value
 *
 *
 *
 * SYNOPSIS:
 *
 * long double cabsl();
 * cmplxl z;
 * long double a;
 *
 * a = cabs( &z );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * If z = x + iy
 *
 * then
 *
 *       a = sqrt( x**2 + y**2 ).
 * 
 * Overflow and underflow are avoided by testing the magnitudes
 * of x and y before squaring.  If either is outside half of
 * the floating point full scale range, both are rescaled.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -30,+30     30000       3.2e-17     9.2e-18
 *    IEEE      -10,+10    100000       2.7e-16     6.9e-17
 */
/*							csqrtl()
 *
 *	Complex square root
 *
 *
 *
 * SYNOPSIS:
 *
 * void csqrtl();
 * cmplxl z, w;
 *
 * csqrtl( &z, &w );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * If z = x + iy,  r = |z|, then
 *
 *                       1/2
 * Im w  =  [ (r - x)/2 ]   ,
 *
 * Re w  =  y / 2 Im w.
 *
 *
 * Note that -w is also a square root of z.  The root chosen
 * is always in the upper half plane.
 *
 * Because of the potential for cancellation error in r - x,
 * the result is sharpened by doing a Heron iteration
 * (see sqrt.c) in complex arithmetic.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       -10,+10     25000       3.2e-17     9.6e-18
 *    IEEE      -10,+10    100000       3.2e-16     7.7e-17
 *
 *                        2
 * Also tested by csqrt( z ) = z, and tested by arguments
 * close to the real axis.
 */

/*							coshl.c
 *
 *	Hyperbolic cosine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, coshl();
 *
 * y = coshl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns hyperbolic cosine of argument in the range MINLOGL to
 * MAXLOGL.
 *
 * cosh(x)  =  ( exp(x) + exp(-x) )/2.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     +-10000      30000       1.1e-19     2.8e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * cosh overflow    |x| > MAXLOGL       MAXNUML
 *
 *
 */

/*							elliel.c
 *
 *	Incomplete elliptic integral of the second kind
 *
 *
 *
 * SYNOPSIS:
 *
 * long double phi, m, y, elliel();
 *
 * y = elliel( phi, m );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *                phi
 *                 -
 *                | |
 *                |                   2
 * E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
 *                |
 *              | |    
 *               -
 *                0
 *
 * of amplitude phi and modulus m, using the arithmetic -
 * geometric mean algorithm.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random arguments with phi in [-10, 10] and m in
 * [0, 1].
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -10,10       50000       2.7e-18     2.3e-19
 *
 *
 */

/*							ellikl.c
 *
 *	Incomplete elliptic integral of the first kind
 *
 *
 *
 * SYNOPSIS:
 *
 * long double phi, m, y, ellikl();
 *
 * y = ellikl( phi, m );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *
 *                phi
 *                 -
 *                | |
 *                |           dt
 * F(phi_\m)  =    |    ------------------
 *                |                   2
 *              | |    sqrt( 1 - m sin t )
 *               -
 *                0
 *
 * of amplitude phi and modulus m, using the arithmetic -
 * geometric mean algorithm.
 *
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random points with m in [0, 1] and phi as indicated.
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -10,10        30000      3.6e-18     4.1e-19
 *
 *
 */

/*							ellpel.c
 *
 *	Complete elliptic integral of the second kind
 *
 *
 *
 * SYNOPSIS:
 *
 * long double m1, y, ellpel();
 *
 * y = ellpel( m1 );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *            pi/2
 *             -
 *            | |                 2
 * E(m)  =    |    sqrt( 1 - m sin t ) dt
 *          | |    
 *           -
 *            0
 *
 * Where m = 1 - m1, using the approximation
 *
 *      P(x)  -  x log x Q(x).
 *
 * Though there are no singularities, the argument m1 is used
 * rather than m for compatibility with ellpk().
 *
 * E(1) = 1; E(0) = pi/2.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0, 1       10000       1.1e-19     3.5e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * ellpel domain     x<0, x>1            0.0
 *
 */

/*							ellpjl.c
 *
 *	Jacobian Elliptic Functions
 *
 *
 *
 * SYNOPSIS:
 *
 * long double u, m, sn, cn, dn, phi;
 * int ellpjl();
 *
 * ellpjl( u, m, _&sn, _&cn, _&dn, _&phi );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
 * and dn(u|m) of parameter m between 0 and 1, and real
 * argument u.
 *
 * These functions are periodic, with quarter-period on the
 * real axis equal to the complete elliptic integral
 * ellpk(1.0-m).
 *
 * Relation to incomplete elliptic integral:
 * If u = ellik(phi,m), then sn(u|m) = sin(phi),
 * and cn(u|m) = cos(phi).  Phi is called the amplitude of u.
 *
 * Computation is by means of the arithmetic-geometric mean
 * algorithm, except when m is within 1e-12 of 0 or 1.  In the
 * latter case with m close to 1, the approximation applies
 * only for phi < pi/2.
 *
 * ACCURACY:
 *
 * Tested at random points with u between 0 and 10, m between
 * 0 and 1.
 *
 *            Absolute error (* = relative error):
 * arithmetic   function   # trials      peak         rms
 *    IEEE      sn          10000       1.7e-18     2.3e-19
 *    IEEE      cn          20000       1.6e-18     2.2e-19
 *    IEEE      dn          10000       4.7e-15     2.7e-17
 *    IEEE      phi         10000       4.0e-19*    6.6e-20*
 *
 * Accuracy deteriorates when u is large.
 *
 */

/*							ellpkl.c
 *
 *	Complete elliptic integral of the first kind
 *
 *
 *
 * SYNOPSIS:
 *
 * long double m1, y, ellpkl();
 *
 * y = ellpkl( m1 );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *
 *            pi/2
 *             -
 *            | |
 *            |           dt
 * K(m)  =    |    ------------------
 *            |                   2
 *          | |    sqrt( 1 - m sin t )
 *           -
 *            0
 *
 * where m = 1 - m1, using the approximation
 *
 *     P(x)  -  log x Q(x).
 *
 * The argument m1 is used rather than m so that the logarithmic
 * singularity at m = 1 will be shifted to the origin; this
 * preserves maximum accuracy.
 *
 * K(0) = pi/2.
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,1        10000       1.1e-19     3.3e-20
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * ellpkl domain      x<0, x>1           0.0
 *
 */

/*							exp10l.c
 *
 *	Base 10 exponential function, long double precision
 *      (Common antilogarithm)
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, exp10l()
 *
 * y = exp10l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns 10 raised to the x power.
 *
 * Range reduction is accomplished by expressing the argument
 * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
 * The Pade' form
 *
 *     1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
 *
 * is used to approximate 10**f.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      +-4900      30000       1.0e-19     2.7e-20
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * exp10l underflow    x < -MAXL10        0.0
 * exp10l overflow     x > MAXL10       MAXNUM
 *
 * IEEE arithmetic: MAXL10 = 4932.0754489586679023819
 *
 */

/*							exp2l.c
 *
 *	Base 2 exponential function, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, exp2l();
 *
 * y = exp2l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns 2 raised to the x power.
 *
 * Range reduction is accomplished by separating the argument
 * into an integer k and fraction f such that
 *     x    k  f
 *    2  = 2  2.
 *
 * A Pade' form
 *
 *   1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
 *
 * approximates 2**x in the basic range [-0.5, 0.5].
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      +-16300     300000      9.1e-20     2.6e-20
 *
 *
 * See exp.c for comments on error amplification.
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * exp2l underflow   x < -16382        0.0
 * exp2l overflow    x >= 16384       MAXNUM
 *
 */

/*							expl.c
 *
 *	Exponential function, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, expl();
 *
 * y = expl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns e (2.71828...) raised to the x power.
 *
 * Range reduction is accomplished by separating the argument
 * into an integer k and fraction f such that
 *
 *     x    k  f
 *    e  = 2  e.
 *
 * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
 * in the basic range [-0.5 ln 2, 0.5 ln 2].
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      +-10000     50000       1.12e-19    2.81e-20
 *
 *
 * Error amplification in the exponential function can be
 * a serious matter.  The error propagation involves
 * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
 * which shows that a 1 lsb error in representing X produces
 * a relative error of X times 1 lsb in the function.
 * While the routine gives an accurate result for arguments
 * that are exactly represented by a long double precision
 * computer number, the result contains amplified roundoff
 * error for large arguments not exactly represented.
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * exp underflow    x < MINLOG         0.0
 * exp overflow     x > MAXLOG         MAXNUM
 *
 */

/*							fabsl.c
 *
 *		Absolute value
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y;
 *
 * y = fabsl( x );
 *
 *
 *
 * DESCRIPTION:
 * 
 * Returns the absolute value of the argument.
 *
 */

/*							fdtrl.c
 *
 *	F distribution, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * int df1, df2;
 * long double x, y, fdtrl();
 *
 * y = fdtrl( df1, df2, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area from zero to x under the F density
 * function (also known as Snedcor's density or the
 * variance ratio density).  This is the density
 * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
 * variables having Chi square distributions with df1
 * and df2 degrees of freedom, respectively.
 *
 * The incomplete beta integral is used, according to the
 * formula
 *
 *	P(x) = incbetl( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
 *
 *
 * The arguments a and b are greater than zero, and x
 * x is nonnegative.
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,x) in the indicated intervals.
 *                x     a,b                     Relative error:
 * arithmetic  domain  domain     # trials      peak         rms
 *    IEEE      0,1    1,100       10000       9.3e-18     2.9e-19
 *    IEEE      0,1    1,10000     10000       1.9e-14     2.9e-15
 *    IEEE      1,5    1,10000     10000       5.8e-15     1.4e-16
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * fdtrl domain     a<0, b<0, x<0         0.0
 *
 */
/*							fdtrcl()
 *
 *	Complemented F distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int df1, df2;
 * long double x, y, fdtrcl();
 *
 * y = fdtrcl( df1, df2, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area from x to infinity under the F density
 * function (also known as Snedcor's density or the
 * variance ratio density).
 *
 *
 *                      inf.
 *                       -
 *              1       | |  a-1      b-1
 * 1-P(x)  =  ------    |   t    (1-t)    dt
 *            B(a,b)  | |
 *                     -
 *                      x
 *
 * (See fdtr.c.)
 *
 * The incomplete beta integral is used, according to the
 * formula
 *
 *	P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
 *
 *
 * ACCURACY:
 *
 * See incbet.c.
 * Tested at random points (a,b,x).
 *
 *                x     a,b                     Relative error:
 * arithmetic  domain  domain     # trials      peak         rms
 *    IEEE      0,1    0,100       10000       4.2e-18     3.3e-19
 *    IEEE      0,1    1,10000     10000       7.2e-15     2.6e-16
 *    IEEE      1,5    1,10000     10000       1.7e-14     3.0e-15
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * fdtrcl domain    a<0, b<0, x<0         0.0
 *
 */
/*							fdtril()
 *
 *	Inverse of complemented F distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int df1, df2;
 * long double x, p, fdtril();
 *
 * x = fdtril( df1, df2, p );
 *
 * DESCRIPTION:
 *
 * Finds the F density argument x such that the integral
 * from x to infinity of the F density is equal to the
 * given probability p.
 *
 * This is accomplished using the inverse beta integral
 * function and the relations
 *
 *      z = incbi( df2/2, df1/2, p )
 *      x = df2 (1-z) / (df1 z).
 *
 * Note: the following relations hold for the inverse of
 * the uncomplemented F distribution:
 *
 *      z = incbi( df1/2, df2/2, p )
 *      x = df2 z / (df1 (1-z)).
 *
 * ACCURACY:
 *
 * See incbi.c.
 * Tested at random points (a,b,p).
 *
 *              a,b                     Relative error:
 * arithmetic  domain     # trials      peak         rms
 *  For p between .001 and 1:
 *    IEEE     1,100       40000       4.6e-18     2.7e-19
 *    IEEE     1,10000     30000       1.7e-14     1.4e-16
 *  For p between 10^-6 and .001:
 *    IEEE     1,100       20000       1.9e-15     3.9e-17
 *    IEEE     1,10000     30000       2.7e-15     4.0e-17
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * fdtril domain   p <= 0 or p > 1       0.0
 *                     v < 1
 */

/*							ceill()
 *							floorl()
 *							frexpl()
 *							ldexpl()
 *							fabsl()
 *
 *	Floating point numeric utilities
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y;
 * long double ceill(), floorl(), frexpl(), ldexpl(), fabsl();
 * int expnt, n;
 *
 * y = floorl(x);
 * y = ceill(x);
 * y = frexpl( x, &expnt );
 * y = ldexpl( x, n );
 * y = fabsl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * All four routines return a long double precision floating point
 * result.
 *
 * floorl() returns the largest integer less than or equal to x.
 * It truncates toward minus infinity.
 *
 * ceill() returns the smallest integer greater than or equal
 * to x.  It truncates toward plus infinity.
 *
 * frexpl() extracts the exponent from x.  It returns an integer
 * power of two to expnt and the significand between 0.5 and 1
 * to y.  Thus  x = y * 2**expn.
 *
 * ldexpl() multiplies x by 2**n.
 *
 * fabsl() returns the absolute value of its argument.
 *
 * These functions are part of the standard C run time library
 * for some but not all C compilers.  The ones supplied are
 * written in C for IEEE arithmetic.  They should
 * be used only if your compiler library does not already have
 * them.
 *
 * The IEEE versions assume that denormal numbers are implemented
 * in the arithmetic.  Some modifications will be required if
 * the arithmetic has abrupt rather than gradual underflow.
 */

/*							gammal.c
 *
 *	Gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, gammal();
 * extern int sgngam;
 *
 * y = gammal( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns gamma function of the argument.  The result is
 * correctly signed, and the sign (+1 or -1) is also
 * returned in a global (extern) variable named sgngam.
 * This variable is also filled in by the logarithmic gamma
 * function lgam().
 *
 * Arguments |x| <= 13 are reduced by recurrence and the function
 * approximated by a rational function of degree 7/8 in the
 * interval (2,3).  Large arguments are handled by Stirling's
 * formula. Large negative arguments are made positive using
 * a reflection formula.  
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -40,+40      10000       3.6e-19     7.9e-20
 *    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19
 *
 * Accuracy for large arguments is dominated by error in powl().
 *
 */
/*							lgaml()
 *
 *	Natural logarithm of gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, lgaml();
 * extern int sgngam;
 *
 * y = lgaml( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the base e (2.718...) logarithm of the absolute
 * value of the gamma function of the argument.
 * The sign (+1 or -1) of the gamma function is returned in a
 * global (extern) variable named sgngam.
 *
 * For arguments greater than 33, the logarithm of the gamma
 * function is approximated by the logarithmic version of
 * Stirling's formula using a polynomial approximation of
 * degree 4. Arguments between -33 and +33 are reduced by
 * recurrence to the interval [2,3] of a rational approximation.
 * The cosecant reflection formula is employed for arguments
 * less than -33.
 *
 * Arguments greater than MAXLGML (10^4928) return MAXNUML.
 *
 *
 *
 * ACCURACY:
 *
 *
 * arithmetic      domain        # trials     peak         rms
 *    IEEE         -40, 40        100000     2.2e-19     4.6e-20
 *    IEEE    10^-2000,10^+2000    20000     1.6e-19     3.3e-20
 * The error criterion was relative when the function magnitude
 * was greater than one but absolute when it was less than one.
 *
 */

/*							gdtrl.c
 *
 *	Gamma distribution function
 *
 *
 *
 * SYNOPSIS:
 *
 * long double a, b, x, y, gdtrl();
 *
 * y = gdtrl( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the integral from zero to x of the gamma probability
 * density function:
 *
 *
 *                x
 *        b       -
 *       a       | |   b-1  -at
 * y =  -----    |    t    e    dt
 *       -     | |
 *      | (b)   -
 *               0
 *
 *  The incomplete gamma integral is used, according to the
 * relation
 *
 * y = igam( b, ax ).
 *
 *
 * ACCURACY:
 *
 * See igam().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * gdtrl domain        x < 0            0.0
 *
 */
/*							gdtrcl.c
 *
 *	Complemented gamma distribution function
 *
 *
 *
 * SYNOPSIS:
 *
 * long double a, b, x, y, gdtrcl();
 *
 * y = gdtrcl( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the integral from x to infinity of the gamma
 * probability density function:
 *
 *
 *               inf.
 *        b       -
 *       a       | |   b-1  -at
 * y =  -----    |    t    e    dt
 *       -     | |
 *      | (b)   -
 *               x
 *
 *  The incomplete gamma integral is used, according to the
 * relation
 *
 * y = igamc( b, ax ).
 *
 *
 * ACCURACY:
 *
 * See igamc().
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * gdtrcl domain        x < 0            0.0
 *
 */

/*
C
C     ..................................................................
C
C        SUBROUTINE GELS
C
C        PURPOSE
C           TO SOLVE A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS WITH
C           SYMMETRIC COEFFICIENT MATRIX UPPER TRIANGULAR PART OF WHICH
C           IS ASSUMED TO BE STORED COLUMNWISE.
C
C        USAGE
C           CALL GELS(R,A,M,N,EPS,IER,AUX)
C
C        DESCRIPTION OF PARAMETERS
C           R      - M BY N RIGHT HAND SIDE MATRIX.  (DESTROYED)
C                    ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS.
C           A      - UPPER TRIANGULAR PART OF THE SYMMETRIC
C                    M BY M COEFFICIENT MATRIX.  (DESTROYED)
C           M      - THE NUMBER OF EQUATIONS IN THE SYSTEM.
C           N      - THE NUMBER OF RIGHT HAND SIDE VECTORS.
C           EPS    - AN INPUT CONSTANT WHICH IS USED AS RELATIVE
C                    TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.
C           IER    - RESULTING ERROR PARAMETER CODED AS FOLLOWS
C                    IER=0  - NO ERROR,
C                    IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR
C                             PIVOT ELEMENT AT ANY ELIMINATION STEP
C                             EQUAL TO 0,
C                    IER=K  - WARNING DUE TO POSSIBLE LOSS OF SIGNIFI-
C                             CANCE INDICATED AT ELIMINATION STEP K+1,
C                             WHERE PIVOT ELEMENT WAS LESS THAN OR
C                             EQUAL TO THE INTERNAL TOLERANCE EPS TIMES
C                             ABSOLUTELY GREATEST MAIN DIAGONAL
C                             ELEMENT OF MATRIX A.
C           AUX    - AN AUXILIARY STORAGE ARRAY WITH DIMENSION M-1.
C
C        REMARKS
C           UPPER TRIANGULAR PART OF MATRIX A IS ASSUMED TO BE STORED
C           COLUMNWISE IN M*(M+1)/2 SUCCESSIVE STORAGE LOCATIONS, RIGHT
C           HAND SIDE MATRIX R COLUMNWISE IN N*M SUCCESSIVE STORAGE
C           LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNWISE
C           TOO.
C           THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
C           GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
C           ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN -
C           INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
C           SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE
C           INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS
C           GIVEN IN CASE M=1.
C           ERROR PARAMETER IER=-1 DOES NOT NECESSARILY MEAN THAT
C           MATRIX A IS SINGULAR, AS ONLY MAIN DIAGONAL ELEMENTS
C           ARE USED AS PIVOT ELEMENTS. POSSIBLY SUBROUTINE GELG (WHICH
C           WORKS WITH TOTAL PIVOTING) WOULD BE ABLE TO FIND A SOLUTION.
C
C        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C           NONE
C
C        METHOD
C           SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH
C           PIVOTING IN MAIN DIAGONAL, IN ORDER TO PRESERVE
C           SYMMETRY IN REMAINING COEFFICIENT MATRICES.
C
C     ..................................................................
C
*/

/*							igamil()
 *
 *      Inverse of complemented imcomplete gamma integral
 *
 *
 *
 * SYNOPSIS:
 *
 * long double a, x, y, igamil();
 *
 * x = igamil( a, y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Given y, the function finds x such that
 *
 *  igamc( a, x ) = y.
 *
 * Starting with the approximate value
 *
 *         3
 *  x = a t
 *
 *  where
 *
 *  t = 1 - d - ndtri(y) sqrt(d)
 * 
 * and
 *
 *  d = 1/9a,
 *
 * the routine performs up to 10 Newton iterations to find the
 * root of igamc(a,x) - y = 0.
 *
 *
 * ACCURACY:
 *
 * Tested for a ranging from 0.5 to 30 and x from 0 to 0.5.
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0,0.5         3400       8.8e-16     1.3e-16
 *    IEEE      0,0.5        10000       1.1e-14     1.0e-15
 *
 */

/*							igaml.c
 *
 *	Incomplete gamma integral
 *
 *
 *
 * SYNOPSIS:
 *
 * long double a, x, y, igaml();
 *
 * y = igaml( a, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * The function is defined by
 *
 *                           x
 *                            -
 *                   1       | |  -t  a-1
 *  igam(a,x)  =   -----     |   e   t   dt.
 *                  -      | |
 *                 | (a)    -
 *                           0
 *
 *
 * In this implementation both arguments must be positive.
 * The integral is evaluated by either a power series or
 * continued fraction expansion, depending on the relative
 * values of a and x.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0,30         4000       4.4e-15     6.3e-16
 *    IEEE      0,30        10000       3.6e-14     5.1e-15
 *
 */
/*							igamcl()
 *
 *	Complemented incomplete gamma integral
 *
 *
 *
 * SYNOPSIS:
 *
 * long double a, x, y, igamcl();
 *
 * y = igamcl( a, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * The function is defined by
 *
 *
 *  igamc(a,x)   =   1 - igam(a,x)
 *
 *                            inf.
 *                              -
 *                     1       | |  -t  a-1
 *               =   -----     |   e   t   dt.
 *                    -      | |
 *                   | (a)    -
 *                             x
 *
 *
 * In this implementation both arguments must be positive.
 * The integral is evaluated by either a power series or
 * continued fraction expansion, depending on the relative
 * values of a and x.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0,30         2000       2.7e-15     4.0e-16
 *    IEEE      0,30        60000       1.4e-12     6.3e-15
 *
 */

/*							incbetl.c
 *
 *	Incomplete beta integral
 *
 *
 * SYNOPSIS:
 *
 * long double a, b, x, y, incbetl();
 *
 * y = incbetl( a, b, x );
 *
 *
 * DESCRIPTION:
 *
 * Returns incomplete beta integral of the arguments, evaluated
 * from zero to x.  The function is defined as
 *
 *                  x
 *     -            -
 *    | (a+b)      | |  a-1     b-1
 *  -----------    |   t   (1-t)   dt.
 *   -     -     | |
 *  | (a) | (b)   -
 *                 0
 *
 * The domain of definition is 0 <= x <= 1.  In this
 * implementation a and b are restricted to positive values.
 * The integral from x to 1 may be obtained by the symmetry
 * relation
 *
 *    1 - incbet( a, b, x )  =  incbet( b, a, 1-x ).
 *
 * The integral is evaluated by a continued fraction expansion
 * or, when b*x is small, by a power series.
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,x) with x between 0 and 1.
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,5       20000        4.5e-18     2.4e-19
 *    IEEE       0,100    100000        3.9e-17     1.0e-17
 * Half-integer a, b:
 *    IEEE      .5,10000  100000        3.9e-14     4.4e-15
 * Outputs smaller than the IEEE gradual underflow threshold
 * were excluded from these statistics.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * incbetl domain     x<0, x>1          0.0
 */

/*							incbil()
 *
 *      Inverse of imcomplete beta integral
 *
 *
 *
 * SYNOPSIS:
 *
 * long double a, b, x, y, incbil();
 *
 * x = incbil( a, b, y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Given y, the function finds x such that
 *
 *  incbet( a, b, x ) = y.
 *
 * the routine performs up to 10 Newton iterations to find the
 * root of incbet(a,b,x) - y = 0.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 *                x       a,b
 * arithmetic   domain   domain   # trials    peak       rms
 *    IEEE      0,1    .5,10000    10000    1.1e-14   1.4e-16
 */

/*							j0l.c
 *
 *	Bessel function of order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, j0l();
 *
 * y = j0l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of first kind, order zero of the argument.
 *
 * The domain is divided into the intervals [0, 9] and
 * (9, infinity). In the first interval the rational approximation
 * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2),
 * where r, s, t are the first three zeros of the function.
 * In the second interval the expansion is in terms of the
 * modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase  P0(x)
 * = atan(Y0(x)/J0(x)).  M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x).
 * The approximation to J0 is M0 * cos(x -  pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE      0, 30       100000      2.8e-19      7.4e-20
 *
 *
 */
/*							y0l.c
 *
 *	Bessel function of the second kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y0l();
 *
 * y = y0l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind, of order
 * zero, of the argument.
 *
 * The domain is divided into the intervals [0, 5>, [5,9> and
 * [9, infinity). In the first interval a rational approximation
 * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
 *
 * In the second interval, the approximation is
 *     (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x)
 * where p, q, r, s are zeros of y0(x).
 *
 * The third interval uses the same approximations to modulus
 * and phase as j0(x), whence y0(x) = modulus * sin(phase).
 *
 * ACCURACY:
 *
 *  Absolute error, when y0(x) < 1; else relative error:
 *
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       100000      3.4e-19     7.6e-20
 *
 */

/*							j1l.c
 *
 *	Bessel function of order one
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, j1l();
 *
 * y = j1l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order one of the argument.
 *
 * The domain is divided into the intervals [0, 9] and
 * (9, infinity). In the first interval the rational approximation
 * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) x P8(x^2) / Q8(x^2),
 * where r, s, t are the first three zeros of the function.
 * In the second interval the expansion is in terms of the
 * modulus M1(x) = sqrt(J1(x)^2 + Y1(x)^2) and phase  P1(x)
 * = atan(Y1(x)/J1(x)).  M1 is approximated by sqrt(1/x)P7(1/x)/Q8(1/x).
 * The approximation to j1 is M1 * cos(x -  3 pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE      0, 30        40000      1.8e-19      5.0e-20
 *
 *
 */
/*							y1l.c
 *
 *	Bessel function of the second kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y1l();
 *
 * y = y1l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind, of order
 * zero, of the argument.
 *
 * The domain is divided into the intervals [0, 4.5>, [4.5,9> and
 * [9, infinity). In the first interval a rational approximation
 * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
 *
 * In the second interval, the approximation is
 *     (x - p)(x - q)(x - r)(x - s)P9(x)/Q10(x)
 * where p, q, r, s are zeros of y1(x).
 *
 * The third interval uses the same approximations to modulus
 * and phase as j1(x), whence y1(x) = modulus * sin(phase).
 *
 * ACCURACY:
 *
 *  Absolute error, when y0(x) < 1; else relative error:
 *
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       36000       2.7e-19     5.3e-20
 *
 */

/*							jnl.c
 *
 *	Bessel function of integer order
 *
 *
 *
 * SYNOPSIS:
 *
 * int n;
 * long double x, y, jnl();
 *
 * y = jnl( n, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order n, where n is a
 * (possibly negative) integer.
 *
 * The ratio of jn(x) to j0(x) is computed by backward
 * recurrence.  First the ratio jn/jn-1 is found by a
 * continued fraction expansion.  Then the recurrence
 * relating successive orders is applied until j0 or j1 is
 * reached.
 *
 * If n = 0 or 1 the routine for j0 or j1 is called
 * directly.
 *
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE     -30, 30        5000       3.3e-19     4.7e-20
 *
 *
 * Not suitable for large n or x.
 *
 */

/*							ldrand.c
 *
 *	Pseudorandom number generator
 *
 *
 *
 * SYNOPSIS:
 *
 * double y;
 * int ldrand();
 *
 * ldrand( &y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Yields a random number 1.0 <= y < 2.0.
 *
 * The three-generator congruential algorithm by Brian
 * Wichmann and David Hill (BYTE magazine, March, 1987,
 * pp 127-8) is used.
 *
 * Versions invoked by the different arithmetic compile
 * time options IBMPC, and MIEEE, produce the same sequences.
 *
 */

/*							log10l.c
 *
 *	Common logarithm, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, log10l();
 *
 * y = log10l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the base 10 logarithm of x.
 *
 * The argument is separated into its exponent and fractional
 * parts.  If the exponent is between -1 and +1, the logarithm
 * of the fraction is approximated by
 *
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
 *
 * Otherwise, setting  z = 2(x-1)/x+1),
 * 
 *     log(x) = z + z**3 P(z)/Q(z).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0.5, 2.0     30000      9.0e-20     2.6e-20
 *    IEEE     exp(+-10000)  30000      6.0e-20     2.3e-20
 *
 * In the tests over the interval exp(+-10000), the logarithms
 * of the random arguments were uniformly distributed over
 * [-10000, +10000].
 *
 * ERROR MESSAGES:
 *
 * log singularity:  x = 0; returns MINLOG
 * log domain:       x < 0; returns MINLOG
 */

/*							log2l.c
 *
 *	Base 2 logarithm, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, log2l();
 *
 * y = log2l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the base 2 logarithm of x.
 *
 * The argument is separated into its exponent and fractional
 * parts.  If the exponent is between -1 and +1, the (natural)
 * logarithm of the fraction is approximated by
 *
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
 *
 * Otherwise, setting  z = 2(x-1)/x+1),
 * 
 *     log(x) = z + z**3 P(z)/Q(z).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0.5, 2.0     30000      9.8e-20     2.7e-20
 *    IEEE     exp(+-10000)  70000      5.4e-20     2.3e-20
 *
 * In the tests over the interval exp(+-10000), the logarithms
 * of the random arguments were uniformly distributed over
 * [-10000, +10000].
 *
 * ERROR MESSAGES:
 *
 * log singularity:  x = 0; returns MINLOG
 * log domain:       x < 0; returns MINLOG
 */

/*							logl.c
 *
 *	Natural logarithm, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, logl();
 *
 * y = logl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the base e (2.718...) logarithm of x.
 *
 * The argument is separated into its exponent and fractional
 * parts.  If the exponent is between -1 and +1, the logarithm
 * of the fraction is approximated by
 *
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
 *
 * Otherwise, setting  z = 2(x-1)/x+1),
 * 
 *     log(x) = z + z**3 P(z)/Q(z).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0.5, 2.0    150000      8.71e-20    2.75e-20
 *    IEEE     exp(+-10000) 100000      5.39e-20    2.34e-20
 *
 * In the tests over the interval exp(+-10000), the logarithms
 * of the random arguments were uniformly distributed over
 * [-10000, +10000].
 *
 * ERROR MESSAGES:
 *
 * log singularity:  x = 0; returns MINLOG
 * log domain:       x < 0; returns MINLOG
 */

/*							mtherr.c
 *
 *	Library common error handling routine
 *
 *
 *
 * SYNOPSIS:
 *
 * char *fctnam;
 * int code;
 * int mtherr();
 *
 * mtherr( fctnam, code );
 *
 *
 *
 * DESCRIPTION:
 *
 * This routine may be called to report one of the following
 * error conditions (in the include file mconf.h).
 *  
 *   Mnemonic        Value          Significance
 *
 *    DOMAIN            1       argument domain error
 *    SING              2       function singularity
 *    OVERFLOW          3       overflow range error
 *    UNDERFLOW         4       underflow range error
 *    TLOSS             5       total loss of precision
 *    PLOSS             6       partial loss of precision
 *    EDOM             33       Unix domain error code
 *    ERANGE           34       Unix range error code
 *
 * The default version of the file prints the function name,
 * passed to it by the pointer fctnam, followed by the
 * error condition.  The display is directed to the standard
 * output device.  The routine then returns to the calling
 * program.  Users may wish to modify the program to abort by
 * calling exit() under severe error conditions such as domain
 * errors.
 *
 * Since all error conditions pass control to this function,
 * the display may be easily changed, eliminated, or directed
 * to an error logging device.
 *
 * SEE ALSO:
 *
 * mconf.h
 *
 */

/*							nbdtrl.c
 *
 *	Negative binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * long double p, y, nbdtrl();
 *
 * y = nbdtrl( k, n, p );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms 0 through k of the negative
 * binomial distribution:
 *
 *   k
 *   --  ( n+j-1 )   n      j
 *   >   (       )  p  (1-p)
 *   --  (   j   )
 *  j=0
 *
 * In a sequence of Bernoulli trials, this is the probability
 * that k or fewer failures precede the nth success.
 *
 * The terms are not computed individually; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random points (k,n,p) with k and n between 1 and 10,000
 * and p between 0 and 1.
 *
 * arithmetic   domain     # trials      peak         rms
 *    Absolute error:
 *    IEEE      0,10000     10000       9.8e-15     2.1e-16
 *
 */
/*							nbdtrcl.c
 *
 *	Complemented negative binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * long double p, y, nbdtrcl();
 *
 * y = nbdtrcl( k, n, p );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms k+1 to infinity of the negative
 * binomial distribution:
 *
 *   inf
 *   --  ( n+j-1 )   n      j
 *   >   (       )  p  (1-p)
 *   --  (   j   )
 *  j=k+1
 *
 * The terms are not computed individually; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 *
 *
 * ACCURACY:
 *
 * See incbetl.c.
 *
 */
/*							nbdtril
 *
 *	Functional inverse of negative binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * long double p, y, nbdtril();
 *
 * p = nbdtril( k, n, y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Finds the argument p such that nbdtr(k,n,p) is equal to y.
 *
 * ACCURACY:
 *
 * Tested at random points (a,b,y), with y between 0 and 1.
 *
 *               a,b                     Relative error:
 * arithmetic  domain     # trials      peak         rms
 *    IEEE     0,100
 * See also incbil.c.
 */

/*							ndtril.c
 *
 *	Inverse of Normal distribution function
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, ndtril();
 *
 * x = ndtril( y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the argument, x, for which the area under the
 * Gaussian probability density function (integrated from
 * minus infinity to x) is equal to y.
 *
 *
 * For small arguments 0 < y < exp(-2), the program computes
 * z = sqrt( -2 log(y) );  then the approximation is
 * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z) .
 * For larger arguments,  x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
 * where w = y - 0.5 .
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain        # trials      peak         rms
 *  Arguments uniformly distributed:
 *    IEEE       0, 1           5000       7.8e-19     9.9e-20
 *  Arguments exponentially distributed:
 *    IEEE     exp(-11355),-1  30000       1.7e-19     4.3e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition    value returned
 * ndtril domain      x <= 0        -MAXNUML
 * ndtril domain      x >= 1         MAXNUML
 *
 */

/*							ndtril.c
 *
 *	Inverse of Normal distribution function
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, ndtril();
 *
 * x = ndtril( y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the argument, x, for which the area under the
 * Gaussian probability density function (integrated from
 * minus infinity to x) is equal to y.
 *
 *
 * For small arguments 0 < y < exp(-2), the program computes
 * z = sqrt( -2 log(y) );  then the approximation is
 * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z) .
 * For larger arguments,  x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
 * where w = y - 0.5 .
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain        # trials      peak         rms
 *  Arguments uniformly distributed:
 *    IEEE       0, 1           5000       7.8e-19     9.9e-20
 *  Arguments exponentially distributed:
 *    IEEE     exp(-11355),-1  30000       1.7e-19     4.3e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition    value returned
 * ndtril domain      x <= 0        -MAXNUML
 * ndtril domain      x >= 1         MAXNUML
 *
 */

/*							pdtrl.c
 *
 *	Poisson distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k;
 * long double m, y, pdtrl();
 *
 * y = pdtrl( k, m );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the first k terms of the Poisson
 * distribution:
 *
 *   k         j
 *   --   -m  m
 *   >   e    --
 *   --       j!
 *  j=0
 *
 * The terms are not summed directly; instead the incomplete
 * gamma integral is employed, according to the relation
 *
 * y = pdtr( k, m ) = igamc( k+1, m ).
 *
 * The arguments must both be positive.
 *
 *
 *
 * ACCURACY:
 *
 * See igamc().
 *
 */
/*							pdtrcl()
 *
 *	Complemented poisson distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k;
 * long double m, y, pdtrcl();
 *
 * y = pdtrcl( k, m );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms k+1 to infinity of the Poisson
 * distribution:
 *
 *  inf.       j
 *   --   -m  m
 *   >   e    --
 *   --       j!
 *  j=k+1
 *
 * The terms are not summed directly; instead the incomplete
 * gamma integral is employed, according to the formula
 *
 * y = pdtrc( k, m ) = igam( k+1, m ).
 *
 * The arguments must both be positive.
 *
 *
 *
 * ACCURACY:
 *
 * See igam.c.
 *
 */
/*							pdtril()
 *
 *	Inverse Poisson distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k;
 * long double m, y, pdtrl();
 *
 * m = pdtril( k, y );
 *
 *
 *
 *
 * DESCRIPTION:
 *
 * Finds the Poisson variable x such that the integral
 * from 0 to x of the Poisson density is equal to the
 * given probability y.
 *
 * This is accomplished using the inverse gamma integral
 * function and the relation
 *
 *    m = igami( k+1, y ).
 *
 *
 *
 *
 * ACCURACY:
 *
 * See igami.c.
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * pdtri domain    y < 0 or y >= 1       0.0
 *                     k < 0
 *
 */

/*							polevll.c
 *							p1evll.c
 *
 *	Evaluate polynomial
 *
 *
 *
 * SYNOPSIS:
 *
 * int N;
 * long double x, y, coef[N+1], polevl[];
 *
 * y = polevll( x, coef, N );
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates polynomial of degree N:
 *
 *                     2          N
 * y  =  C  + C x + C x  +...+ C x
 *        0    1     2          N
 *
 * Coefficients are stored in reverse order:
 *
 * coef[0] = C  , ..., coef[N] = C  .
 *            N                   0
 *
 *  The function p1evll() assumes that coef[N] = 1.0 and is
 * omitted from the array.  Its calling arguments are
 * otherwise the same as polevll().
 *
 *  This module also contains the following globally declared constants:
 * MAXNUML = 1.189731495357231765021263853E4932L;
 * MACHEPL = 5.42101086242752217003726400434970855712890625E-20L;
 * MAXLOGL =  1.1356523406294143949492E4L;
 * MINLOGL = -1.1355137111933024058873E4L;
 * LOGE2L  = 6.9314718055994530941723E-1L;
 * LOG2EL  = 1.4426950408889634073599E0L;
 * PIL     = 3.1415926535897932384626L;
 * PIO2L   = 1.5707963267948966192313L;
 * PIO4L   = 7.8539816339744830961566E-1L;
 *
 * SPEED:
 *
 * In the interest of speed, there are no checks for out
 * of bounds arithmetic.  This routine is used by most of
 * the functions in the library.  Depending on available
 * equipment features, the user may wish to rewrite the
 * program in microcode or assembly language.
 *
 */

/*							powil.c
 *
 *	Real raised to integer power, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, powil();
 * int n;
 *
 * y = powil( x, n );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns argument x raised to the nth power.
 * The routine efficiently decomposes n as a sum of powers of
 * two. The desired power is a product of two-to-the-kth
 * powers of x.  Thus to compute the 32767 power of x requires
 * 28 multiplications instead of 32767 multiplications.
 *
 *
 *
 * ACCURACY:
 *
 *
 *                      Relative error:
 * arithmetic   x domain   n domain  # trials      peak         rms
 *    IEEE     .001,1000  -1022,1023  50000       4.3e-17     7.8e-18
 *    IEEE        1,2     -1022,1023  20000       3.9e-17     7.6e-18
 *    IEEE     .99,1.01     0,8700    10000       3.6e-16     7.2e-17
 *
 * Returns MAXNUM on overflow, zero on underflow.
 *
 */

/*							powl.c
 *
 *	Power function, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, z, powl();
 *
 * z = powl( x, y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Computes x raised to the yth power.  Analytically,
 *
 *      x**y  =  exp( y log(x) ).
 *
 * Following Cody and Waite, this program uses a lookup table
 * of 2**-i/32 and pseudo extended precision arithmetic to
 * obtain several extra bits of accuracy in both the logarithm
 * and the exponential.
 *
 *
 *
 * ACCURACY:
 *
 * The relative error of pow(x,y) can be estimated
 * by   y dl ln(2),   where dl is the absolute error of
 * the internally computed base 2 logarithm.  At the ends
 * of the approximation interval the logarithm equal 1/32
 * and its relative error is about 1 lsb = 1.1e-19.  Hence
 * the predicted relative error in the result is 2.3e-21 y .
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *
 *    IEEE     +-1000       40000      2.8e-18      3.7e-19
 * .001 < x < 1000, with log(x) uniformly distributed.
 * -1000 < y < 1000, y uniformly distributed.
 *
 *    IEEE     0,8700       60000      6.5e-18      1.0e-18
 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * pow overflow     x**y > MAXNUM      MAXNUM
 * pow underflow   x**y < 1/MAXNUM       0.0
 * pow domain      x<0 and y noninteger  0.0
 *
 */

/*							sinhl.c
 *
 *	Hyperbolic sine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, sinhl();
 *
 * y = sinhl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns hyperbolic sine of argument in the range MINLOGL to
 * MAXLOGL.
 *
 * The range is partitioned into two segments.  If |x| <= 1, a
 * rational function of the form x + x**3 P(x)/Q(x) is employed.
 * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       -2,2       10000       1.5e-19     3.9e-20
 *    IEEE     +-10000      30000       1.1e-19     2.8e-20
 *
 */

/*							sinl.c
 *
 *	Circular sine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, sinl();
 *
 * y = sinl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Range reduction is into intervals of pi/4.  The reduction
 * error is nearly eliminated by contriving an extended precision
 * modular arithmetic.
 *
 * Two polynomial approximating functions are employed.
 * Between 0 and pi/4 the sine is approximated by the Cody
 * and Waite polynomial form
 *      x + x**3 P(x**2) .
 * Between pi/4 and pi/2 the cosine is represented as
 *      1 - .5 x**2 + x**4 Q(x**2) .
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE     +-5.5e11      200,000    1.2e-19     2.9e-20
 * 
 * ERROR MESSAGES:
 *
 *   message           condition        value returned
 * sin total loss   x > 2**39               0.0
 *
 * Loss of precision occurs for x > 2**39 = 5.49755813888e11.
 * The routine as implemented flags a TLOSS error for
 * x > 2**39 and returns 0.0.
 */
/*							cosl.c
 *
 *	Circular cosine, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, cosl();
 *
 * y = cosl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Range reduction is into intervals of pi/4.  The reduction
 * error is nearly eliminated by contriving an extended precision
 * modular arithmetic.
 *
 * Two polynomial approximating functions are employed.
 * Between 0 and pi/4 the cosine is approximated by
 *      1 - .5 x**2 + x**4 Q(x**2) .
 * Between pi/4 and pi/2 the sine is represented by the Cody
 * and Waite polynomial form
 *      x  +  x**3 P(x**2) .
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE     +-5.5e11       50000      1.2e-19     2.9e-20
 */

/*							sqrtl.c
 *
 *	Square root, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, sqrtl();
 *
 * y = sqrtl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the square root of x.
 *
 * Range reduction involves isolating the power of two of the
 * argument and using a polynomial approximation to obtain
 * a rough value for the square root.  Then Heron's iteration
 * is used three times to converge to an accurate value.
 *
 * Note, some arithmetic coprocessors such as the 8087 and
 * 68881 produce correctly rounded square roots, which this
 * routine will not.
 *
 * ACCURACY:
 *
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,10        30000       8.1e-20     3.1e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * sqrt domain        x < 0            0.0
 *
 */

/*							stdtrl.c
 *
 *	Student's t distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * long double p, t, stdtrl();
 * int k;
 *
 * p = stdtrl( k, t );
 *
 *
 * DESCRIPTION:
 *
 * Computes the integral from minus infinity to t of the Student
 * t distribution with integer k > 0 degrees of freedom:
 *
 *                                      t
 *                                      -
 *                                     | |
 *              -                      |         2   -(k+1)/2
 *             | ( (k+1)/2 )           |  (     x   )
 *       ----------------------        |  ( 1 + --- )        dx
 *                     -               |  (      k  )
 *       sqrt( k pi ) | ( k/2 )        |
 *                                   | |
 *                                    -
 *                                   -inf.
 * 
 * Relation to incomplete beta integral:
 *
 *        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
 * where
 *        z = k/(k + t**2).
 *
 * For t < -1.6, this is the method of computation.  For higher t,
 * a direct method is derived from integration by parts.
 * Since the function is symmetric about t=0, the area under the
 * right tail of the density is found by calling the function
 * with -t instead of t.
 * 
 * ACCURACY:
 *
 * Tested at random 1 <= k <= 100.  The "domain" refers to t.
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -100,-1.6    10000       5.7e-18     9.8e-19
 *    IEEE     -1.6,100     10000       3.8e-18     1.0e-19
 */

/*							stdtril.c
 *
 *	Functional inverse of Student's t distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * long double p, t, stdtril();
 * int k;
 *
 * t = stdtril( k, p );
 *
 *
 * DESCRIPTION:
 *
 * Given probability p, finds the argument t such that stdtrl(k,t)
 * is equal to p.
 * 
 * ACCURACY:
 *
 * Tested at random 1 <= k <= 100.  The "domain" refers to p:
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,1        3500       4.2e-17     4.1e-18
 */

/*							tanhl.c
 *
 *	Hyperbolic tangent, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, tanhl();
 *
 * y = tanhl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns hyperbolic tangent of argument in the range MINLOGL to
 * MAXLOGL.
 *
 * A rational function is used for |x| < 0.625.  The form
 * x + x**3 P(x)/Q(x) of Cody _& Waite is employed.
 * Otherwise,
 *    tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -2,2        30000       1.3e-19     2.4e-20
 *
 */

/*							tanl.c
 *
 *	Circular tangent, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, tanl();
 *
 * y = tanl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the circular tangent of the radian argument x.
 *
 * Range reduction is modulo pi/4.  A rational function
 *       x + x**3 P(x**2)/Q(x**2)
 * is employed in the basic interval [0, pi/4].
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     +-1.07e9       30000     1.9e-19     4.8e-20
 *
 * ERROR MESSAGES:
 *
 *   message         condition          value returned
 * tan total loss   x > 2^39                0.0
 *
 */
/*							cotl.c
 *
 *	Circular cotangent, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, cotl();
 *
 * y = cotl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the circular cotangent of the radian argument x.
 *
 * Range reduction is modulo pi/4.  A rational function
 *       x + x**3 P(x**2)/Q(x**2)
 * is employed in the basic interval [0, pi/4].
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     +-1.07e9      30000      1.9e-19     5.1e-20
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition          value returned
 * cot total loss   x > 2^39                0.0
 * cot singularity  x = 0                  MAXNUM
 *
 */

/*							unityl.c
 *
 * Relative error approximations for function arguments near
 * unity.
 *
 *    log1p(x) = log(1+x)
 *    expm1(x) = exp(x) - 1
 *    cos1m(x) = cos(x) - 1
 *
 */

/*							ynl.c
 *
 *	Bessel function of second kind of integer order
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, ynl();
 * int n;
 *
 * y = ynl( n, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order n, where n is a
 * (possibly negative) integer.
 *
 * The function is evaluated by forward recurrence on
 * n, starting with values computed by the routines
 * y0l() and y1l().
 *
 * If n = 0 or 1 the routine for y0l or y1l is called
 * directly.
 *
 *
 *
 * ACCURACY:
 *
 *
 *       Absolute error, except relative error when y > 1.
 *       x >= 0,  -30 <= n <= +30.
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -30, 30       10000       1.3e-18     1.8e-19
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * ynl singularity   x = 0              MAXNUML
 * ynl overflow                         MAXNUML
 *
 * Spot checked against tables for x, n between 0 and 100.
 *
 */