summaryrefslogtreecommitdiff
path: root/libm/double/sqrt.c
blob: 92bbce53bb142fd07a92ce006e4b5961dbb2bd03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*							sqrt.c
 *
 *	Square root
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, sqrt();
 *
 * y = sqrt( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the square root of x.
 *
 * Range reduction involves isolating the power of two of the
 * argument and using a polynomial approximation to obtain
 * a rough value for the square root.  Then Heron's iteration
 * is used three times to converge to an accurate value.
 *
 *
 *
 * ACCURACY:
 *
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0, 10       60000       2.1e-17     7.9e-18
 *    IEEE      0,1.7e308   30000       1.7e-16     6.3e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * sqrt domain        x < 0            0.0
 *
 */

/*
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
*/


#include <math.h>
#ifdef ANSIPROT
extern double frexp ( double, int * );
extern double ldexp ( double, int );
#else
double frexp(), ldexp();
#endif
extern double SQRT2;  /*  SQRT2 = 1.41421356237309504880 */

double sqrt(x)
double x;
{
int e;
#ifndef UNK
short *q;
#endif
double z, w;

if( x <= 0.0 )
	{
	if( x < 0.0 )
		mtherr( "sqrt", DOMAIN );
	return( 0.0 );
	}
w = x;
/* separate exponent and significand */
#ifdef UNK
z = frexp( x, &e );
#endif
#ifdef DEC
q = (short *)&x;
e = ((*q >> 7) & 0377) - 0200;
*q &= 0177;
*q |= 040000;
z = x;
#endif

/* Note, frexp and ldexp are used in order to
 * handle denormal numbers properly.
 */
#ifdef IBMPC
z = frexp( x, &e );
q = (short *)&x;
q += 3;
/*
e = ((*q >> 4) & 0x0fff) - 0x3fe;
*q &= 0x000f;
*q |= 0x3fe0;
z = x;
*/
#endif
#ifdef MIEEE
z = frexp( x, &e );
q = (short *)&x;
/*
e = ((*q >> 4) & 0x0fff) - 0x3fe;
*q &= 0x000f;
*q |= 0x3fe0;
z = x;
*/
#endif

/* approximate square root of number between 0.5 and 1
 * relative error of approximation = 7.47e-3
 */
x = 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;

/* adjust for odd powers of 2 */
if( (e & 1) != 0 )
	x *= SQRT2;

/* re-insert exponent */
#ifdef UNK
x = ldexp( x, (e >> 1) );
#endif
#ifdef DEC
*q += ((e >> 1) & 0377) << 7;
*q &= 077777;
#endif
#ifdef IBMPC
x = ldexp( x, (e >> 1) );
/*
*q += ((e >>1) & 0x7ff) << 4;
*q &= 077777;
*/
#endif
#ifdef MIEEE
x = ldexp( x, (e >> 1) );
/*
*q += ((e >>1) & 0x7ff) << 4;
*q &= 077777;
*/
#endif

/* Newton iterations: */
#ifdef UNK
x = 0.5*(x + w/x);
x = 0.5*(x + w/x);
x = 0.5*(x + w/x);
#endif

/* Note, assume the square root cannot be denormal,
 * so it is safe to use integer exponent operations here.
 */
#ifdef DEC
x += w/x;
*q -= 0200;
x += w/x;
*q -= 0200;
x += w/x;
*q -= 0200;
#endif
#ifdef IBMPC
x += w/x;
*q -= 0x10;
x += w/x;
*q -= 0x10;
x += w/x;
*q -= 0x10;
#endif
#ifdef MIEEE
x += w/x;
*q -= 0x10;
x += w/x;
*q -= 0x10;
x += w/x;
*q -= 0x10;
#endif

return(x);
}