summaryrefslogtreecommitdiff
path: root/libm/double/polrt.c
blob: b1cd88087c96127e6c816043f26fd4f5ff254c3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*							polrt.c
 *
 *	Find roots of a polynomial
 *
 *
 *
 * SYNOPSIS:
 *
 * typedef struct
 *	{
 *	double r;
 *	double i;
 *	}cmplx;
 *
 * double xcof[], cof[];
 * int m;
 * cmplx root[];
 *
 * polrt( xcof, cof, m, root )
 *
 *
 *
 * DESCRIPTION:
 *
 * Iterative determination of the roots of a polynomial of
 * degree m whose coefficient vector is xcof[].  The
 * coefficients are arranged in ascending order; i.e., the
 * coefficient of x**m is xcof[m].
 *
 * The array cof[] is working storage the same size as xcof[].
 * root[] is the output array containing the complex roots.
 *
 *
 * ACCURACY:
 *
 * Termination depends on evaluation of the polynomial at
 * the trial values of the roots.  The values of multiple roots
 * or of roots that are nearly equal may have poor relative
 * accuracy after the first root in the neighborhood has been
 * found.
 *
 */

/*							polrt	*/
/* Complex roots of real polynomial */
/* number of coefficients is m + 1 ( i.e., m is degree of polynomial) */

#include <math.h>
/*
typedef struct
	{
	double r;
	double i;
	}cmplx;
*/
#ifdef ANSIPROT
extern double fabs ( double );
#else
double fabs();
#endif

int polrt( xcof, cof, m, root )
double xcof[], cof[];
int m;
cmplx root[];
{
register double *p, *q;
int i, j, nsav, n, n1, n2, nroot, iter, retry;
int final;
double mag, cofj;
cmplx x0, x, xsav, dx, t, t1, u, ud;

final = 0;
n = m;
if( n <= 0 )
	return(1);
if( n > 36 )
	return(2);
if( xcof[m] == 0.0 )
	return(4);

n1 = n;
n2 = n;
nroot = 0;
nsav = n;
q = &xcof[0];
p = &cof[n];
for( j=0; j<=nsav; j++ )
	*p-- = *q++;	/*	cof[ n-j ] = xcof[j];*/
xsav.r = 0.0;
xsav.i = 0.0;

nxtrut:
x0.r = 0.00500101;
x0.i = 0.01000101;
retry = 0;

tryagn:
retry += 1;
x.r = x0.r;

x0.r = -10.0 * x0.i;
x0.i = -10.0 * x.r;

x.r = x0.r;
x.i = x0.i;

finitr:
iter = 0;

while( iter < 500 )
{
u.r = cof[n];
if( u.r == 0.0 )
	{		/* this root is zero */
	x.r = 0;
	n1 -= 1;
	n2 -= 1;
	goto zerrut;
	}
u.i = 0;
ud.r = 0;
ud.i = 0;
t.r = 1.0;
t.i = 0;
p = &cof[n-1];
for( i=0; i<n; i++ )
	{
	t1.r = x.r * t.r  -  x.i * t.i;
	t1.i = x.r * t.i  +  x.i * t.r;
	cofj = *p--;		/* evaluate polynomial */
	u.r += cofj * t1.r;
	u.i += cofj * t1.i;
	cofj = cofj * (i+1);	/* derivative */
	ud.r += cofj * t.r;
	ud.i -= cofj * t.i;
	t.r = t1.r;
	t.i = t1.i;
	}

mag = ud.r * ud.r  +  ud.i * ud.i;
if( mag == 0.0 )
	{
	if( !final )
		goto tryagn;
	x.r = xsav.r;
	x.i = xsav.i;
	goto findon;
	}
dx.r = (u.i * ud.i  -  u.r * ud.r)/mag;
x.r += dx.r;
dx.i = -(u.r * ud.i  +  u.i * ud.r)/mag;
x.i += dx.i;
if( (fabs(dx.i) + fabs(dx.r)) < 1.0e-6 )
	goto lupdon;
iter += 1;
}	/* while iter < 500 */

if( final )
	goto lupdon;
if( retry < 5 )
	goto tryagn;
return(3);

lupdon:
/* Swap original and reduced polynomials */
q = &xcof[nsav];
p = &cof[0];
for( j=0; j<=n2; j++ )
	{
	cofj = *q;
	*q-- = *p;
	*p++ = cofj;
	}
i = n;
n = n1;
n1 = i;

if( !final )
	{
	final = 1;
	if( fabs(x.i/x.r) < 1.0e-4 )
		x.i = 0.0;
	xsav.r = x.r;
	xsav.i = x.i;
	goto finitr;	/* do final iteration on original polynomial */
	}

findon:
final = 0;
if( fabs(x.i/x.r) >= 1.0e-5 )
	{
	cofj = x.r + x.r;
	mag = x.r * x.r  +  x.i * x.i;
	n -= 2;
	}
else
	{		/* root is real */
zerrut:
	x.i = 0;
	cofj = x.r;
	mag = 0;
	n -= 1;
	}
/* divide working polynomial cof(z) by z - x */
p = &cof[1];
*p += cofj * *(p-1);
for( j=1; j<n; j++ )
	{
	*(p+1) += cofj * *p  -  mag * *(p-1);
	p++;
	}

setrut:
root[nroot].r = x.r;
root[nroot].i = x.i;
nroot += 1;
if( mag != 0.0 )
	{
	x.i = -x.i;
	mag = 0;
	goto setrut;	/* fill in the complex conjugate root */
	}
if( n > 0 )
	goto nxtrut;
return(0);
}