1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/* ynl.c
*
* Bessel function of second kind of integer order
*
*
*
* SYNOPSIS:
*
* long double x, y, ynl();
* int n;
*
* y = ynl( n, x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order n, where n is a
* (possibly negative) integer.
*
* The function is evaluated by forward recurrence on
* n, starting with values computed by the routines
* y0l() and y1l().
*
* If n = 0 or 1 the routine for y0l or y1l is called
* directly.
*
*
*
* ACCURACY:
*
*
* Absolute error, except relative error when y > 1.
* x >= 0, -30 <= n <= +30.
* arithmetic domain # trials peak rms
* IEEE -30, 30 10000 1.3e-18 1.8e-19
*
*
* ERROR MESSAGES:
*
* message condition value returned
* ynl singularity x = 0 MAXNUML
* ynl overflow MAXNUML
*
* Spot checked against tables for x, n between 0 and 100.
*
*/
/*
Cephes Math Library Release 2.1: December, 1988
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
extern long double MAXNUML;
#ifdef ANSIPROT
extern long double y0l ( long double );
extern long double y1l ( long double );
#else
long double y0l(), y1l();
#endif
long double ynl( n, x )
int n;
long double x;
{
long double an, anm1, anm2, r;
int k, sign;
if( n < 0 )
{
n = -n;
if( (n & 1) == 0 ) /* -1**n */
sign = 1;
else
sign = -1;
}
else
sign = 1;
if( n == 0 )
return( sign * y0l(x) );
if( n == 1 )
return( sign * y1l(x) );
/* test for overflow */
if( x <= 0.0L )
{
mtherr( "ynl", SING );
return( -MAXNUML );
}
/* forward recurrence on n */
anm2 = y0l(x);
anm1 = y1l(x);
k = 1;
r = 2 * k;
do
{
an = r * anm1 / x - anm2;
anm2 = anm1;
anm1 = an;
r += 2.0L;
++k;
}
while( k < n );
return( sign * an );
}
|