summaryrefslogtreecommitdiff
path: root/libm/ldouble/j1l.c
blob: 83428473e9cf65f9fe00183f6ead3b47a326e013 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*							j1l.c
 *
 *	Bessel function of order one
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, j1l();
 *
 * y = j1l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order one of the argument.
 *
 * The domain is divided into the intervals [0, 9] and
 * (9, infinity). In the first interval the rational approximation
 * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) x P8(x^2) / Q8(x^2),
 * where r, s, t are the first three zeros of the function.
 * In the second interval the expansion is in terms of the
 * modulus M1(x) = sqrt(J1(x)^2 + Y1(x)^2) and phase  P1(x)
 * = atan(Y1(x)/J1(x)).  M1 is approximated by sqrt(1/x)P7(1/x)/Q8(1/x).
 * The approximation to j1 is M1 * cos(x -  3 pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE      0, 30        40000      1.8e-19      5.0e-20
 *
 *
 */
/*							y1l.c
 *
 *	Bessel function of the second kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y1l();
 *
 * y = y1l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind, of order
 * zero, of the argument.
 *
 * The domain is divided into the intervals [0, 4.5>, [4.5,9> and
 * [9, infinity). In the first interval a rational approximation
 * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
 *
 * In the second interval, the approximation is
 *     (x - p)(x - q)(x - r)(x - s)P9(x)/Q10(x)
 * where p, q, r, s are zeros of y1(x).
 *
 * The third interval uses the same approximations to modulus
 * and phase as j1(x), whence y1(x) = modulus * sin(phase).
 *
 * ACCURACY:
 *
 *  Absolute error, when y0(x) < 1; else relative error:
 *
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       36000       2.7e-19     5.3e-20
 *
 */

/* Copyright 1994 by Stephen L. Moshier (moshier@world.std.com).  */

#include <math.h>

/*
j1(x) = (x^2-r0^2)(x^2-r1^2)(x^2-r2^2) x P(x**2)/Q(x**2)
0 <= x <= 9
Relative error
n=8, d=8
Peak error =  2e-21
*/
#if UNK
static long double j1n[9] = {
-2.63469779622127762897E-4L,
 9.31329762279632791262E-1L,
-1.46280142797793933909E3L,
 1.32000129539331214495E6L,
-7.41183271195454042842E8L,
 2.626500686552841932403E11L,
-5.68263073022183470933E13L,
 6.80006297997263446982E15L,
-3.41470097444474566748E17L,
};
static long double j1d[8] = {
/* 1.00000000000000000000E0L,*/
 2.95267951972943745733E3L,
 4.78723926343829674773E6L,
 5.37544732957807543920E9L,
 4.46866213886267829490E12L,
 2.76959756375961607085E15L,
 1.23367806884831151194E18L,
 3.57325874689695599524E20L,
 5.10779045516141578461E22L,
};
#endif
#if IBMPC
static short j1n[] = {
0xf72f,0x18cc,0x50b2,0x8a22,0xbff3, XPD
0x6dc3,0xc850,0xa096,0xee6b,0x3ffe, XPD
0x29f3,0x496b,0xa54c,0xb6d9,0xc009, XPD
0x38f5,0xf72b,0x0a5c,0xa122,0x4013, XPD
0x1ac8,0xc825,0x3c9c,0xb0b6,0xc01c, XPD
0x038e,0xbd23,0xa7fa,0xf49c,0x4024, XPD
0x636c,0x4d29,0x9f71,0xcebb,0xc02c, XPD
0xd3c2,0xf8f0,0xf852,0xc144,0x4033, XPD
0xd8d8,0x7311,0xa7d2,0x97a4,0xc039, XPD
};
static short j1d[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0xbaf9,0x146e,0xdf50,0xb88a,0x400a, XPD
0x6a17,0xe162,0x4e86,0x9218,0x4015, XPD
0x6041,0xc9fe,0x6890,0xa033,0x401f, XPD
0xb498,0xfdd5,0x209e,0x820e,0x4029, XPD
0x0122,0x56c0,0xf2ef,0x9d6e,0x4032, XPD
0xe6c0,0xa725,0x3d56,0x88f7,0x403b, XPD
0x665d,0xb178,0x242e,0x9af7,0x4043, XPD
0xdd67,0xf5b3,0x0522,0xad0f,0x404a, XPD
};
#endif
#if MIEEE
static long j1n[27] = {
0xbff30000,0x8a2250b2,0x18ccf72f,
0x3ffe0000,0xee6ba096,0xc8506dc3,
0xc0090000,0xb6d9a54c,0x496b29f3,
0x40130000,0xa1220a5c,0xf72b38f5,
0xc01c0000,0xb0b63c9c,0xc8251ac8,
0x40240000,0xf49ca7fa,0xbd23038e,
0xc02c0000,0xcebb9f71,0x4d29636c,
0x40330000,0xc144f852,0xf8f0d3c2,
0xc0390000,0x97a4a7d2,0x7311d8d8,
};
static long j1d[24] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x400a0000,0xb88adf50,0x146ebaf9,
0x40150000,0x92184e86,0xe1626a17,
0x401f0000,0xa0336890,0xc9fe6041,
0x40290000,0x820e209e,0xfdd5b498,
0x40320000,0x9d6ef2ef,0x56c00122,
0x403b0000,0x88f73d56,0xa725e6c0,
0x40430000,0x9af7242e,0xb178665d,
0x404a0000,0xad0f0522,0xf5b3dd67,
};
#endif
/*
sqrt(j0^2(1/x^2) + y0^2(1/x^2)) = z P(z**2)/Q(z**2)
z(x) = 1/sqrt(x)
Relative error
n=7, d=8
Peak error =  1.35e=20
Relative error spread =  9.9e0
*/
#if UNK
static long double modulusn[8] = {
-5.041742205078442098874E0L,
 3.918474430130242177355E-1L,
 2.527521168680500659056E0L,
 7.172146812845906480743E0L,
 2.859499532295180940060E0L,
 1.014671139779858141347E0L,
 1.255798064266130869132E-1L,
 1.596507617085714650238E-2L,
};
static long double modulusd[8] = {
/* 1.000000000000000000000E0L,*/
-6.233092094568239317498E0L,
-9.214128701852838347002E-1L,
 2.531772200570435289832E0L,
 8.755081357265851765640E0L,
 3.554340386955608261463E0L,
 1.267949948774331531237E0L,
 1.573909467558180942219E-1L,
 2.000925566825407466160E-2L,
};
#endif
#if IBMPC
static short modulusn[] = {
0x3d53,0xb598,0xf3bf,0xa155,0xc001, XPD
0x3111,0x863a,0x3a61,0xc8a0,0x3ffd, XPD
0x7d55,0xdb8c,0xe825,0xa1c2,0x4000, XPD
0xe5e2,0x6914,0x3a08,0xe582,0x4001, XPD
0x71e6,0x88a5,0x0a53,0xb702,0x4000, XPD
0x2cb0,0xc657,0xbe70,0x81e0,0x3fff, XPD
0x6de4,0x8fae,0xfe26,0x8097,0x3ffc, XPD
0xa905,0x05fb,0x3101,0x82c9,0x3ff9, XPD
};
static short modulusd[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0x2603,0x640e,0x7d8d,0xc775,0xc001, XPD
0x77b5,0x8f2d,0xb6bf,0xebe1,0xbffe, XPD
0x6420,0x97ce,0x8e44,0xa208,0x4000, XPD
0x0260,0x746b,0xd030,0x8c14,0x4002, XPD
0x77b6,0x34e2,0x501a,0xe37a,0x4000, XPD
0x37ce,0x79ae,0x2f15,0xa24c,0x3fff, XPD
0xfc82,0x02c7,0x17a4,0xa12b,0x3ffc, XPD
0x1237,0xcc6c,0x7356,0xa3ea,0x3ff9, XPD
};
#endif
#if MIEEE
static long modulusn[24] = {
0xc0010000,0xa155f3bf,0xb5983d53,
0x3ffd0000,0xc8a03a61,0x863a3111,
0x40000000,0xa1c2e825,0xdb8c7d55,
0x40010000,0xe5823a08,0x6914e5e2,
0x40000000,0xb7020a53,0x88a571e6,
0x3fff0000,0x81e0be70,0xc6572cb0,
0x3ffc0000,0x8097fe26,0x8fae6de4,
0x3ff90000,0x82c93101,0x05fba905,
};
static long modulusd[24] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0xc0010000,0xc7757d8d,0x640e2603,
0xbffe0000,0xebe1b6bf,0x8f2d77b5,
0x40000000,0xa2088e44,0x97ce6420,
0x40020000,0x8c14d030,0x746b0260,
0x40000000,0xe37a501a,0x34e277b6,
0x3fff0000,0xa24c2f15,0x79ae37ce,
0x3ffc0000,0xa12b17a4,0x02c7fc82,
0x3ff90000,0xa3ea7356,0xcc6c1237,
};
#endif
/*
atan(y1(x)/j1(x))  =  x - 3pi/4 + z P(z**2)/Q(z**2)
z(x) = 1/x
Absolute error
n=5, d=6
Peak error =  4.83e-21
Relative error spread =  1.9e0
*/
#if UNK
static long double phasen[6] = {
 2.010456367705144783933E0L,
 1.587378144541918176658E0L,
 2.682837461073751055565E-1L,
 1.472572645054468815027E-2L,
 2.884976126715926258586E-4L,
 1.708502235134706284899E-6L,
};
static long double phased[6] = {
/* 1.000000000000000000000E0L,*/
 6.809332495854873089362E0L,
 4.518597941618813112665E0L,
 7.320149039410806471101E-1L,
 3.960155028960712309814E-2L,
 7.713202197319040439861E-4L,
 4.556005960359216767984E-6L,
};
#endif
#if IBMPC
static short phasen[] = {
0xebc0,0x5506,0x512f,0x80ab,0x4000, XPD
0x6050,0x98aa,0x3500,0xcb2f,0x3fff, XPD
0xe907,0x28b9,0x7cb7,0x895c,0x3ffd, XPD
0xa830,0xf4a3,0x2c60,0xf144,0x3ff8, XPD
0xf74f,0xbe87,0x7e7d,0x9741,0x3ff3, XPD
0x540c,0xc1d5,0xb096,0xe54f,0x3feb, XPD
};
static short phased[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0xefe3,0x292c,0x0d43,0xd9e6,0x4001, XPD
0xb1f2,0xe0d2,0x5ab5,0x9098,0x4001, XPD
0xc39e,0x9c8c,0x5428,0xbb65,0x3ffe, XPD
0x98f8,0xd610,0x3c35,0xa235,0x3ffa, XPD
0xa853,0x55fb,0x6c79,0xca32,0x3ff4, XPD
0x8d72,0x2be3,0xcb0f,0x98df,0x3fed, XPD
};
#endif
#if MIEEE
static long phasen[18] = {
0x40000000,0x80ab512f,0x5506ebc0,
0x3fff0000,0xcb2f3500,0x98aa6050,
0x3ffd0000,0x895c7cb7,0x28b9e907,
0x3ff80000,0xf1442c60,0xf4a3a830,
0x3ff30000,0x97417e7d,0xbe87f74f,
0x3feb0000,0xe54fb096,0xc1d5540c,
};
static long phased[18] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x40010000,0xd9e60d43,0x292cefe3,
0x40010000,0x90985ab5,0xe0d2b1f2,
0x3ffe0000,0xbb655428,0x9c8cc39e,
0x3ffa0000,0xa2353c35,0xd61098f8,
0x3ff40000,0xca326c79,0x55fba853,
0x3fed0000,0x98dfcb0f,0x2be38d72,
};
#endif
#define JZ1 1.46819706421238932572e1L
#define JZ2 4.92184563216946036703e1L
#define JZ3 1.03499453895136580332e2L

#define THPIO4L  2.35619449019234492885L
#ifdef ANSIPROT
extern long double sqrtl ( long double );
extern long double fabsl ( long double );
extern long double polevll ( long double, void *, int );
extern long double p1evll ( long double, void *, int );
extern long double cosl ( long double );
extern long double sinl ( long double );
extern long double logl ( long double );
long double j1l (long double );
#else
long double sqrtl(), fabsl(), polevll(), p1evll(), cosl(), sinl(), logl();
long double j1l();
#endif

long double j1l(x)
long double x;
{
long double xx, y, z, modulus, phase;

xx = x * x;
if( xx < 81.0L )
  {
    y = (xx - JZ1) * (xx - JZ2) * (xx - JZ3);
    y *= x * polevll( xx, j1n, 8 ) / p1evll( xx, j1d, 8 );
    return y;
  }

y = fabsl(x);
xx = 1.0/xx;
phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 );

z = 1.0/y;
modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 8 );

y = modulus * cosl( y -  THPIO4L + z*phase) / sqrtl(y);
if( x < 0 )
  y = -y;
return y;
}

/*
y1(x) = 2/pi * (log(x) * j1(x) - 1/x) + R(x^2) z P(z**2)/Q(z**2)
0 <= x <= 4.5
z(x) = x
Absolute error
n=6, d=7
Peak error =  7.25e-22
Relative error spread =  4.5e-2
*/
#if UNK
static long double y1n[7] = {
-1.288901054372751879531E5L,
 9.914315981558815369372E7L,
-2.906793378120403577274E10L,
 3.954354656937677136266E12L,
-2.445982226888344140154E14L,
 5.685362960165615942886E15L,
-2.158855258453711703120E16L,
};
static long double y1d[7] = {
/* 1.000000000000000000000E0L,*/
 8.926354644853231136073E2L,
 4.679841933793707979659E5L,
 1.775133253792677466651E8L,
 5.089532584184822833416E10L,
 1.076474894829072923244E13L,
 1.525917240904692387994E15L,
 1.101136026928555260168E17L,
};
#endif
#if IBMPC
static short y1n[] = {
0x5b16,0xf7f8,0x0d7e,0xfbbd,0xc00f, XPD
0x53e4,0x194c,0xbefa,0xbd19,0x4019, XPD
0x7607,0xa687,0xaf0a,0xd892,0xc021, XPD
0x5633,0xaa6b,0x79e5,0xe62c,0x4028, XPD
0x69fd,0x1242,0xf62d,0xde75,0xc02e, XPD
0x7f8b,0x4757,0x75bd,0xa196,0x4033, XPD
0x3a10,0x0848,0x5930,0x9965,0xc035, XPD
};
static short y1d[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0xdd1a,0x3b8e,0xab73,0xdf28,0x4008, XPD
0x298c,0x29ef,0x0630,0xe482,0x4011, XPD
0x0e86,0x117b,0x36d6,0xa94a,0x401a, XPD
0x57e0,0x1d92,0x90a9,0xbd99,0x4022, XPD
0xaaf0,0x342b,0xd098,0x9ca5,0x402a, XPD
0x8c6a,0x397e,0x0963,0xad7a,0x4031, XPD
0x7302,0xb91b,0xde7e,0xc399,0x4037, XPD
};
#endif
#if MIEEE
static long y1n[21] = {
0xc00f0000,0xfbbd0d7e,0xf7f85b16,
0x40190000,0xbd19befa,0x194c53e4,
0xc0210000,0xd892af0a,0xa6877607,
0x40280000,0xe62c79e5,0xaa6b5633,
0xc02e0000,0xde75f62d,0x124269fd,
0x40330000,0xa19675bd,0x47577f8b,
0xc0350000,0x99655930,0x08483a10,
};
static long y1d[21] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x40080000,0xdf28ab73,0x3b8edd1a,
0x40110000,0xe4820630,0x29ef298c,
0x401a0000,0xa94a36d6,0x117b0e86,
0x40220000,0xbd9990a9,0x1d9257e0,
0x402a0000,0x9ca5d098,0x342baaf0,
0x40310000,0xad7a0963,0x397e8c6a,
0x40370000,0xc399de7e,0xb91b7302,
};
#endif
/*
y1(x) = (x-YZ1)(x-YZ2)(x-YZ3)(x-YZ4)R(x) P(z)/Q(z)
z(x) = x
4.5 <= x <= 9
Absolute error
n=9, d=10
Peak error =  3.27e-22
Relative error spread =  4.5e-2
*/
#if UNK
static long double y159n[10] = {
-6.806634906054210550896E-1L,
 4.306669585790359450532E1L,
-9.230477746767243316014E2L,
 6.171186628598134035237E3L,
 2.096869860275353982829E4L,
-1.238961670382216747944E5L,
-1.781314136808997406109E6L,
-1.803400156074242435454E6L,
-1.155761550219364178627E6L,
 3.112221202330688509818E5L,
};
static long double y159d[10] = {
/* 1.000000000000000000000E0L,*/
-6.181482377814679766978E1L,
 2.238187927382180589099E3L,
-5.225317824142187494326E4L,
 9.217235006983512475118E5L,
-1.183757638771741974521E7L,
 1.208072488974110742912E8L,
-8.193431077523942651173E8L,
 4.282669747880013349981E9L,
-1.171523459555524458808E9L,
 1.078445545755236785692E8L,
};
#endif
#if IBMPC
static short y159n[] = {
0xb5e5,0xbb42,0xf667,0xae3f,0xbffe, XPD
0xfdf1,0x41e5,0x4beb,0xac44,0x4004, XPD
0xe917,0x8486,0x0ebd,0xe6c3,0xc008, XPD
0xdf40,0x226b,0x7e37,0xc0d9,0x400b, XPD
0xb2bf,0x4296,0x65af,0xa3d1,0x400d, XPD
0xa33b,0x8229,0x1561,0xf1fc,0xc00f, XPD
0xcd43,0x2f50,0x1118,0xd972,0xc013, XPD
0x3811,0xa3da,0x413f,0xdc24,0xc013, XPD
0xf62f,0xd968,0x8c66,0x8d15,0xc013, XPD
0x539b,0xf305,0xc3d8,0x97f6,0x4011, XPD
};
static short y159d[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0x1a6c,0x1c93,0x612a,0xf742,0xc004, XPD
0xd0fe,0x2487,0x01c0,0x8be3,0x400a, XPD
0xbed4,0x3ad5,0x2da1,0xcc1d,0xc00e, XPD
0x3c4f,0xdc46,0xb802,0xe107,0x4012, XPD
0xe5e5,0x4172,0x8863,0xb4a0,0xc016, XPD
0x6de5,0xb797,0xea1c,0xe66b,0x4019, XPD
0xa46a,0x0273,0xbc0f,0xc358,0xc01c, XPD
0x8e0e,0xe148,0x5ab3,0xff44,0x401e, XPD
0xb3ad,0x1c6d,0x0f07,0x8ba8,0xc01d, XPD
0xa231,0x6ab0,0x7952,0xcdb2,0x4019, XPD
};
#endif
#if MIEEE
static long y159n[30] = {
0xbffe0000,0xae3ff667,0xbb42b5e5,
0x40040000,0xac444beb,0x41e5fdf1,
0xc0080000,0xe6c30ebd,0x8486e917,
0x400b0000,0xc0d97e37,0x226bdf40,
0x400d0000,0xa3d165af,0x4296b2bf,
0xc00f0000,0xf1fc1561,0x8229a33b,
0xc0130000,0xd9721118,0x2f50cd43,
0xc0130000,0xdc24413f,0xa3da3811,
0xc0130000,0x8d158c66,0xd968f62f,
0x40110000,0x97f6c3d8,0xf305539b,
};
static long y159d[30] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0xc0040000,0xf742612a,0x1c931a6c,
0x400a0000,0x8be301c0,0x2487d0fe,
0xc00e0000,0xcc1d2da1,0x3ad5bed4,
0x40120000,0xe107b802,0xdc463c4f,
0xc0160000,0xb4a08863,0x4172e5e5,
0x40190000,0xe66bea1c,0xb7976de5,
0xc01c0000,0xc358bc0f,0x0273a46a,
0x401e0000,0xff445ab3,0xe1488e0e,
0xc01d0000,0x8ba80f07,0x1c6db3ad,
0x40190000,0xcdb27952,0x6ab0a231,
};
#endif

extern long double MAXNUML;
/* #define MAXNUML 1.18973149535723176502e4932L */
#define TWOOPI 6.36619772367581343075535e-1L
#define THPIO4 2.35619449019234492885L
#define Y1Z1 2.19714132603101703515e0L
#define Y1Z2 5.42968104079413513277e0L
#define Y1Z3 8.59600586833116892643e0L
#define Y1Z4 1.17491548308398812434e1L

long double y1l(x)
long double x;
{
long double xx, y, z, modulus, phase;

if( x < 0.0 )
  {
    return (-MAXNUML);
  }
z = 1.0/x;
xx = x * x;
if( xx < 81.0L )
  {
    if( xx < 20.25L )
      {
	y = TWOOPI * (logl(x) * j1l(x) - z);
	y += x * polevll( xx, y1n, 6 ) / p1evll( xx, y1d, 7 );
      }
    else
      {
	y = (x - Y1Z1)*(x - Y1Z2)*(x - Y1Z3)*(x - Y1Z4);
	y *= polevll( x, y159n, 9 ) / p1evll( x, y159d, 10 );
      }
    return y;
  }

xx = 1.0/xx;
phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 );

modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 8 );

z = modulus * sinl( x -  THPIO4L + z*phase) / sqrtl(x);
return z;
}