summaryrefslogtreecommitdiff
path: root/libm/ldouble/j0l.c
blob: a30a65a4fe55040c24cd7c1b175db41dd08022d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/*							j0l.c
 *
 *	Bessel function of order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, j0l();
 *
 * y = j0l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of first kind, order zero of the argument.
 *
 * The domain is divided into the intervals [0, 9] and
 * (9, infinity). In the first interval the rational approximation
 * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2),
 * where r, s, t are the first three zeros of the function.
 * In the second interval the expansion is in terms of the
 * modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase  P0(x)
 * = atan(Y0(x)/J0(x)).  M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x).
 * The approximation to J0 is M0 * cos(x -  pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE      0, 30       100000      2.8e-19      7.4e-20
 *
 *
 */
/*							y0l.c
 *
 *	Bessel function of the second kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y0l();
 *
 * y = y0l( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind, of order
 * zero, of the argument.
 *
 * The domain is divided into the intervals [0, 5>, [5,9> and
 * [9, infinity). In the first interval a rational approximation
 * R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
 *
 * In the second interval, the approximation is
 *     (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x)
 * where p, q, r, s are zeros of y0(x).
 *
 * The third interval uses the same approximations to modulus
 * and phase as j0(x), whence y0(x) = modulus * sin(phase).
 *
 * ACCURACY:
 *
 *  Absolute error, when y0(x) < 1; else relative error:
 *
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       100000      3.4e-19     7.6e-20
 *
 */

/* Copyright 1994 by Stephen L. Moshier (moshier@world.std.com).  */

#include <math.h>

/*
j0(x) = (x^2-JZ1)(x^2-JZ2)(x^2-JZ3)P(x**2)/Q(x**2)
0 <= x <= 9
Relative error
n=7, d=8
Peak error =  8.49e-22
Relative error spread =  2.2e-3
*/
#if UNK
static long double j0n[8] = {
 1.296848754518641770562E0L,
-3.239201943301299801018E3L,
 3.490002040733471400107E6L,
-2.076797068740966813173E9L,
 7.283696461857171054941E11L,
-1.487926133645291056388E14L,
 1.620335009643150402368E16L,
-7.173386747526788067407E17L,
};
static long double j0d[8] = {
/* 1.000000000000000000000E0L,*/
 2.281959869176887763845E3L,
 2.910386840401647706984E6L,
 2.608400226578100610991E9L,
 1.752689035792859338860E12L,
 8.879132373286001289461E14L,
 3.265560832845194013669E17L,
 7.881340554308432241892E19L,
 9.466475654163919450528E21L,
};
#endif
#if IBMPC
static short j0n[] = {
0xf759,0x4208,0x23d6,0xa5ff,0x3fff, XPD
0xa9a8,0xe62b,0x3b28,0xca73,0xc00a, XPD
0xfe10,0xb608,0x4829,0xd503,0x4014, XPD
0x008c,0x7b60,0xd119,0xf792,0xc01d, XPD
0x943a,0x69b7,0x36ca,0xa996,0x4026, XPD
0x1b0b,0x6331,0x7add,0x8753,0xc02e, XPD
0x4018,0xad26,0x71ba,0xe643,0x4034, XPD
0xb96c,0xc486,0xfb95,0x9f47,0xc03a, XPD
};
static short j0d[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0xbdfe,0xc832,0x5b9f,0x8e9f,0x400a, XPD
0xe1a0,0x923f,0xcb5c,0xb1a2,0x4014, XPD
0x66d2,0x93fe,0x0762,0x9b79,0x401e, XPD
0xfed1,0x086d,0x3425,0xcc0a,0x4027, XPD
0x0841,0x8cb6,0x5a46,0xc9e3,0x4030, XPD
0x3d2c,0xed55,0x20e1,0x9105,0x4039, XPD
0xfdce,0xa4ca,0x2ed8,0x88b8,0x4041, XPD
0x00ac,0xfb2b,0x6f62,0x804b,0x4048, XPD
};
#endif
#if MIEEE
static long j0n[24] = {
0x3fff0000,0xa5ff23d6,0x4208f759,
0xc00a0000,0xca733b28,0xe62ba9a8,
0x40140000,0xd5034829,0xb608fe10,
0xc01d0000,0xf792d119,0x7b60008c,
0x40260000,0xa99636ca,0x69b7943a,
0xc02e0000,0x87537add,0x63311b0b,
0x40340000,0xe64371ba,0xad264018,
0xc03a0000,0x9f47fb95,0xc486b96c,
};
static long j0d[24] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x400a0000,0x8e9f5b9f,0xc832bdfe,
0x40140000,0xb1a2cb5c,0x923fe1a0,
0x401e0000,0x9b790762,0x93fe66d2,
0x40270000,0xcc0a3425,0x086dfed1,
0x40300000,0xc9e35a46,0x8cb60841,
0x40390000,0x910520e1,0xed553d2c,
0x40410000,0x88b82ed8,0xa4cafdce,
0x40480000,0x804b6f62,0xfb2b00ac,
};
#endif
/*
sqrt(j0^2(1/x^2) + y0^2(1/x^2)) = z P(z**2)/Q(z**2)
z(x) = 1/sqrt(x)
Relative error
n=7, d=7
Peak error =  1.80e-20
Relative error spread =  5.1e-2
*/
#if UNK
static long double modulusn[8] = {
 3.947542376069224461532E-1L,
 6.864682945702134624126E0L,
 1.021369773577974343844E1L,
 7.626141421290849630523E0L,
 2.842537511425216145635E0L,
 7.162842530423205720962E-1L,
 9.036664453160200052296E-2L,
 8.461833426898867839659E-3L,
};
static long double modulusd[7] = {
/* 1.000000000000000000000E0L,*/
 9.117176038171821115904E0L,
 1.301235226061478261481E1L,
 9.613002539386213788182E0L,
 3.569671060989910901903E0L,
 8.983920141407590632423E-1L,
 1.132577931332212304986E-1L,
 1.060533546154121770442E-2L,
};
#endif
#if IBMPC
static short modulusn[] = {
0x8559,0xf552,0x3a38,0xca1d,0x3ffd, XPD
0x38a3,0xa663,0x7b91,0xdbab,0x4001, XPD
0xb343,0x2673,0x4e51,0xa36b,0x4002, XPD
0x5e4b,0xe3af,0x59bb,0xf409,0x4001, XPD
0xb1cd,0x4e5e,0x2274,0xb5ec,0x4000, XPD
0xcfe9,0x74e0,0x67a1,0xb75e,0x3ffe, XPD
0x6b78,0x4cc6,0x25b7,0xb912,0x3ffb, XPD
0xcb2b,0x4b73,0x8075,0x8aa3,0x3ff8, XPD
};
static short modulusd[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0x4498,0x3d2a,0xf3fb,0x91df,0x4002, XPD
0x5e3d,0xb5f4,0x9848,0xd032,0x4002, XPD
0xb837,0x3075,0xdbc0,0x99ce,0x4002, XPD
0x775a,0x1b79,0x7d9c,0xe475,0x4000, XPD
0x7e3f,0xb8dd,0x04df,0xe5fd,0x3ffe, XPD
0xed5a,0x31cd,0xb3ac,0xe7f3,0x3ffb, XPD
0x8a83,0x1b80,0x003e,0xadc2,0x3ff8, XPD
};
#endif
#if MIEEE
static long modulusn[24] = {
0x3ffd0000,0xca1d3a38,0xf5528559,
0x40010000,0xdbab7b91,0xa66338a3,
0x40020000,0xa36b4e51,0x2673b343,
0x40010000,0xf40959bb,0xe3af5e4b,
0x40000000,0xb5ec2274,0x4e5eb1cd,
0x3ffe0000,0xb75e67a1,0x74e0cfe9,
0x3ffb0000,0xb91225b7,0x4cc66b78,
0x3ff80000,0x8aa38075,0x4b73cb2b,
};
static long modulusd[21] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x40020000,0x91dff3fb,0x3d2a4498,
0x40020000,0xd0329848,0xb5f45e3d,
0x40020000,0x99cedbc0,0x3075b837,
0x40000000,0xe4757d9c,0x1b79775a,
0x3ffe0000,0xe5fd04df,0xb8dd7e3f,
0x3ffb0000,0xe7f3b3ac,0x31cded5a,
0x3ff80000,0xadc2003e,0x1b808a83,
};
#endif
/*
atan(y0(x)/j0(x)) = x - pi/4 + x P(x**2)/Q(x**2)
Absolute error
n=5, d=6
Peak error =  2.80e-21
Relative error spread =  5.5e-1
*/
#if UNK
static long double phasen[6] = {
-7.356766355393571519038E-1L,
-5.001635199922493694706E-1L,
-7.737323518141516881715E-2L,
-3.998893155826990642730E-3L,
-7.496317036829964150970E-5L,
-4.290885090773112963542E-7L,
};
static long double phased[6] = {
/* 1.000000000000000000000E0L,*/
 7.377856408614376072745E0L,
 4.285043297797736118069E0L,
 6.348446472935245102890E-1L,
 3.229866782185025048457E-2L,
 6.014932317342190404134E-4L,
 3.432708072618490390095E-6L,
};
#endif
#if IBMPC
static short phasen[] = {
0x5106,0x12a6,0x4dd2,0xbc55,0xbffe, XPD
0x1e30,0x04da,0xb769,0x800a,0xbffe, XPD
0x8d8a,0x84e7,0xdbd5,0x9e75,0xbffb, XPD
0xe514,0x8866,0x25a9,0x8309,0xbff7, XPD
0xdc17,0x325e,0x8baf,0x9d35,0xbff1, XPD
0x4c2f,0x2dd8,0x79c3,0xe65d,0xbfe9, XPD
};
static short phased[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0xf3e9,0xb2a5,0x6652,0xec17,0x4001, XPD
0x4b69,0x3f87,0x131f,0x891f,0x4001, XPD
0x6f25,0x2a95,0x2dc6,0xa285,0x3ffe, XPD
0x37bf,0xfcc8,0x9b9f,0x844b,0x3ffa, XPD
0xac5c,0x4806,0x8709,0x9dad,0x3ff4, XPD
0x4c8c,0x2dd8,0x79c3,0xe65d,0x3fec, XPD
};
#endif
#if MIEEE
static long phasen[18] = {
0xbffe0000,0xbc554dd2,0x12a65106,
0xbffe0000,0x800ab769,0x04da1e30,
0xbffb0000,0x9e75dbd5,0x84e78d8a,
0xbff70000,0x830925a9,0x8866e514,
0xbff10000,0x9d358baf,0x325edc17,
0xbfe90000,0xe65d79c3,0x2dd84c2f,
};
static long phased[18] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x40010000,0xec176652,0xb2a5f3e9,
0x40010000,0x891f131f,0x3f874b69,
0x3ffe0000,0xa2852dc6,0x2a956f25,
0x3ffa0000,0x844b9b9f,0xfcc837bf,
0x3ff40000,0x9dad8709,0x4806ac5c,
0x3fec0000,0xe65d79c3,0x2dd84c8c,
};
#endif
#define JZ1 5.783185962946784521176L
#define JZ2 30.47126234366208639908L
#define JZ3 7.488700679069518344489e1L

#define PIO4L 0.78539816339744830961566L
#ifdef ANSIPROT
extern long double sqrtl ( long double );
extern long double fabsl ( long double );
extern long double polevll ( long double, void *, int );
extern long double p1evll ( long double, void *, int );
extern long double cosl ( long double );
extern long double sinl ( long double );
extern long double logl ( long double );
long double j0l ( long double );
#else
long double sqrtl(), fabsl(), polevll(), p1evll(), cosl(), sinl(), logl();
long double j0l();
#endif

long double j0l(x)
long double x;
{
long double xx, y, z, modulus, phase;

xx = x * x;
if( xx < 81.0L )
  {
    y = (xx - JZ1) * (xx - JZ2) * (xx -JZ3);
    y *= polevll( xx, j0n, 7 ) / p1evll( xx, j0d, 8 );
    return y;
  }

y = fabsl(x);
xx = 1.0/xx;
phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 );

z = 1.0/y;
modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 7 );

y = modulus * cosl( y -  PIO4L + z*phase) / sqrtl(y);
return y;
}


/*
y0(x) = 2/pi * log(x) * j0(x) + P(z**2)/Q(z**2)
0 <= x <= 5
Absolute error
n=7, d=7
Peak error =  8.55e-22
Relative error spread =  2.7e-1
*/
#if UNK
static long double y0n[8] = {
 1.556909814120445353691E4L,
-1.464324149797947303151E7L,
 5.427926320587133391307E9L,
-9.808510181632626683952E11L,
 8.747842804834934784972E13L,
-3.461898868011666236539E15L,
 4.421767595991969611983E16L,
-1.847183690384811186958E16L,
};
static long double y0d[7] = {
/* 1.000000000000000000000E0L,*/
 1.040792201755841697889E3L,
 6.256391154086099882302E5L,
 2.686702051957904669677E8L,
 8.630939306572281881328E10L,
 2.027480766502742538763E13L,
 3.167750475899536301562E15L,
 2.502813268068711844040E17L,
};
#endif
#if IBMPC
static short y0n[] = {
0x126c,0x20be,0x647f,0xf344,0x400c, XPD
0x2ec0,0x7b95,0x297f,0xdf70,0xc016, XPD
0x2fdd,0x4b27,0xca98,0xa1c3,0x401f, XPD
0x3e3c,0xb343,0x46c9,0xe45f,0xc026, XPD
0xb219,0x37ba,0x5142,0x9f1f,0x402d, XPD
0x23c9,0x6b29,0x4244,0xc4c9,0xc032, XPD
0x501f,0x6264,0xbdf4,0x9d17,0x4036, XPD
0x5fbd,0x0171,0x135a,0x8340,0xc035, XPD
};
static short y0d[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0x9057,0x7f25,0x59b7,0x8219,0x4009, XPD
0xd938,0xb6b2,0x71d8,0x98be,0x4012, XPD
0x97a4,0x90fa,0xa7e9,0x801c,0x401b, XPD
0x553b,0x4dc8,0x8695,0xa0c3,0x4023, XPD
0x6732,0x8c1b,0xc5ab,0x9384,0x402b, XPD
0x04d3,0xa629,0xd61d,0xb410,0x4032, XPD
0x241a,0x8f2b,0x629a,0xde4b,0x4038, XPD
};
#endif
#if MIEEE
static long y0n[24] = {
0x400c0000,0xf344647f,0x20be126c,
0xc0160000,0xdf70297f,0x7b952ec0,
0x401f0000,0xa1c3ca98,0x4b272fdd,
0xc0260000,0xe45f46c9,0xb3433e3c,
0x402d0000,0x9f1f5142,0x37bab219,
0xc0320000,0xc4c94244,0x6b2923c9,
0x40360000,0x9d17bdf4,0x6264501f,
0xc0350000,0x8340135a,0x01715fbd,
};
static long y0d[21] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0x40090000,0x821959b7,0x7f259057,
0x40120000,0x98be71d8,0xb6b2d938,
0x401b0000,0x801ca7e9,0x90fa97a4,
0x40230000,0xa0c38695,0x4dc8553b,
0x402b0000,0x9384c5ab,0x8c1b6732,
0x40320000,0xb410d61d,0xa62904d3,
0x40380000,0xde4b629a,0x8f2b241a,
};
#endif
/*
y0(x) = (x-Y0Z1)(x-Y0Z2)(x-Y0Z3)(x-Y0Z4)P(x)/Q(x)
4.5 <= x <= 9
Absolute error
n=9, d=9
Peak error =  2.35e-20
Relative error spread =  7.8e-13
*/
#if UNK
static long double y059n[10] = {
 2.368715538373384869796E-2L,
-1.472923738545276751402E0L,
 2.525993724177105060507E1L,
 7.727403527387097461580E1L,
-4.578271827238477598563E3L,
 7.051411242092171161986E3L,
 1.951120419910720443331E5L,
 6.515211089266670755622E5L,
-1.164760792144532266855E5L,
-5.566567444353735925323E5L,
};
static long double y059d[9] = {
/* 1.000000000000000000000E0L,*/
-6.235501989189125881723E1L,
 2.224790285641017194158E3L,
-5.103881883748705381186E4L,
 8.772616606054526158657E5L,
-1.096162986826467060921E7L,
 1.083335477747278958468E8L,
-7.045635226159434678833E8L,
 3.518324187204647941098E9L,
 1.173085288957116938494E9L,
};
#endif
#if IBMPC
static short y059n[] = {
0x992f,0xab45,0x90b6,0xc20b,0x3ff9, XPD
0x1207,0x46ea,0xc3db,0xbc88,0xbfff, XPD
0x5504,0x035a,0x59fa,0xca14,0x4003, XPD
0xd5a3,0xf673,0x4e59,0x9a8c,0x4005, XPD
0x62e0,0xc25b,0x2cb3,0x8f12,0xc00b, XPD
0xe8fa,0x4b44,0x4a39,0xdc5b,0x400b, XPD
0x49e2,0xfb52,0x02af,0xbe8a,0x4010, XPD
0x8c07,0x29e3,0x11be,0x9f10,0x4012, XPD
0xfd54,0xb2fe,0x0a23,0xe37e,0xc00f, XPD
0xf90c,0x3510,0x0be9,0x87e7,0xc012, XPD
};
static short y059d[] = {
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
0xdebf,0xa468,0x8a55,0xf96b,0xc004, XPD
0xad09,0x8e6a,0xa502,0x8b0c,0x400a, XPD
0xa28c,0x5563,0xd19f,0xc75e,0xc00e, XPD
0xe8b6,0xd705,0xda91,0xd62c,0x4012, XPD
0xec8a,0x4697,0xddde,0xa742,0xc016, XPD
0x27ff,0xca92,0x3d78,0xcea1,0x4019, XPD
0xe26b,0x76b9,0x250a,0xa7fb,0xc01c, XPD
0xceb6,0x3463,0x5ddb,0xd1b5,0x401e, XPD
0x3b3b,0xea0b,0xb8d1,0x8bd7,0x401d, XPD
};
#endif
#if MIEEE
static long y059n[30] = {
0x3ff90000,0xc20b90b6,0xab45992f,
0xbfff0000,0xbc88c3db,0x46ea1207,
0x40030000,0xca1459fa,0x035a5504,
0x40050000,0x9a8c4e59,0xf673d5a3,
0xc00b0000,0x8f122cb3,0xc25b62e0,
0x400b0000,0xdc5b4a39,0x4b44e8fa,
0x40100000,0xbe8a02af,0xfb5249e2,
0x40120000,0x9f1011be,0x29e38c07,
0xc00f0000,0xe37e0a23,0xb2fefd54,
0xc0120000,0x87e70be9,0x3510f90c,
};
static long y059d[27] = {
/*0x3fff0000,0x80000000,0x00000000,*/
0xc0040000,0xf96b8a55,0xa468debf,
0x400a0000,0x8b0ca502,0x8e6aad09,
0xc00e0000,0xc75ed19f,0x5563a28c,
0x40120000,0xd62cda91,0xd705e8b6,
0xc0160000,0xa742ddde,0x4697ec8a,
0x40190000,0xcea13d78,0xca9227ff,
0xc01c0000,0xa7fb250a,0x76b9e26b,
0x401e0000,0xd1b55ddb,0x3463ceb6,
0x401d0000,0x8bd7b8d1,0xea0b3b3b,
};
#endif
#define TWOOPI 6.36619772367581343075535E-1L
#define Y0Z1 3.957678419314857868376e0L
#define Y0Z2 7.086051060301772697624e0L
#define Y0Z3 1.022234504349641701900e1L
#define Y0Z4 1.336109747387276347827e1L
/* #define MAXNUML 1.189731495357231765021e4932L */
extern long double MAXNUML;

long double y0l(x)
long double x;
{
long double xx, y, z, modulus, phase;

if( x < 0.0 )
  {
    return (-MAXNUML);
  }
xx = x * x;
if( xx < 81.0L )
  {
    if( xx < 20.25L )
      {
	y = TWOOPI * logl(x) * j0l(x);
	y += polevll( xx, y0n, 7 ) / p1evll( xx, y0d, 7 );
      }
    else
      {
	y = (x - Y0Z1)*(x - Y0Z2)*(x - Y0Z3)*(x - Y0Z4);
	y *= polevll( x, y059n, 9 ) / p1evll( x, y059d, 9 );
      }
    return y;
  }

y = fabsl(x);
xx = 1.0/xx;
phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 );

z = 1.0/y;
modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 7 );

y = modulus * sinl( y -  PIO4L + z*phase) / sqrtl(y);
return y;
}