1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
/* ceill()
* floorl()
* frexpl()
* ldexpl()
* fabsl()
* signbitl()
* isnanl()
* isfinitel()
*
* Floating point numeric utilities
*
*
*
* SYNOPSIS:
*
* long double ceill(), floorl(), frexpl(), ldexpl(), fabsl();
* int signbitl(), isnanl(), isfinitel();
* long double x, y;
* int expnt, n;
*
* y = floorl(x);
* y = ceill(x);
* y = frexpl( x, &expnt );
* y = ldexpl( x, n );
* y = fabsl( x );
* n = signbitl(x);
* n = isnanl(x);
* n = isfinitel(x);
*
*
*
* DESCRIPTION:
*
* The following routines return a long double precision floating point
* result:
*
* floorl() returns the largest integer less than or equal to x.
* It truncates toward minus infinity.
*
* ceill() returns the smallest integer greater than or equal
* to x. It truncates toward plus infinity.
*
* frexpl() extracts the exponent from x. It returns an integer
* power of two to expnt and the significand between 0.5 and 1
* to y. Thus x = y * 2**expn.
*
* ldexpl() multiplies x by 2**n.
*
* fabsl() returns the absolute value of its argument.
*
* These functions are part of the standard C run time library
* for some but not all C compilers. The ones supplied are
* written in C for IEEE arithmetic. They should
* be used only if your compiler library does not already have
* them.
*
* The IEEE versions assume that denormal numbers are implemented
* in the arithmetic. Some modifications will be required if
* the arithmetic has abrupt rather than gradual underflow.
*/
/*
Cephes Math Library Release 2.7: May, 1998
Copyright 1984, 1987, 1988, 1992, 1998 by Stephen L. Moshier
*/
#include <math.h>
/* This is defined in mconf.h. */
/* #define DENORMAL 1 */
#ifdef UNK
/* Change UNK into something else. */
#undef UNK
#if BIGENDIAN
#define MIEEE 1
#else
#define IBMPC 1
#endif
#endif
#ifdef IBMPC
#define EXPMSK 0x800f
#define MEXP 0x7ff
#define NBITS 64
#endif
#ifdef MIEEE
#define EXPMSK 0x800f
#define MEXP 0x7ff
#define NBITS 64
#endif
extern double MAXNUML;
#ifdef ANSIPROT
extern long double fabsl ( long double );
extern long double floorl ( long double );
extern int isnanl ( long double );
#else
long double fabsl(), floorl();
int isnanl();
#endif
#ifdef INFINITIES
extern long double INFINITYL;
#endif
#ifdef NANS
extern long double NANL;
#endif
long double fabsl(x)
long double x;
{
union
{
long double d;
short i[6];
} u;
u.d = x;
#ifdef IBMPC
u.i[4] &= 0x7fff;
#endif
#ifdef MIEEE
u.i[0] &= 0x7fff;
#endif
return( u.d );
}
long double ceill(x)
long double x;
{
long double y;
#ifdef UNK
mtherr( "ceill", DOMAIN );
return(0.0L);
#endif
#ifdef INFINITIES
if(x == -INFINITYL)
return(x);
#endif
#ifdef MINUSZERO
if(x == 0.0L)
return(x);
#endif
y = floorl(x);
if( y < x )
y += 1.0L;
return(y);
}
/* Bit clearing masks: */
static unsigned short bmask[] = {
0xffff,
0xfffe,
0xfffc,
0xfff8,
0xfff0,
0xffe0,
0xffc0,
0xff80,
0xff00,
0xfe00,
0xfc00,
0xf800,
0xf000,
0xe000,
0xc000,
0x8000,
0x0000,
};
long double floorl(x)
long double x;
{
unsigned short *p;
union
{
long double y;
unsigned short sh[6];
} u;
int e;
#ifdef UNK
mtherr( "floor", DOMAIN );
return(0.0L);
#endif
#ifdef INFINITIES
if( x == INFINITYL )
return(x);
#endif
#ifdef MINUSZERO
if(x == 0.0L)
return(x);
#endif
u.y = x;
/* find the exponent (power of 2) */
#ifdef IBMPC
p = (unsigned short *)&u.sh[4];
e = (*p & 0x7fff) - 0x3fff;
p -= 4;
#endif
#ifdef MIEEE
p = (unsigned short *)&u.sh[0];
e = (*p & 0x7fff) - 0x3fff;
p += 5;
#endif
if( e < 0 )
{
if( u.y < 0.0L )
return( -1.0L );
else
return( 0.0L );
}
e = (NBITS -1) - e;
/* clean out 16 bits at a time */
while( e >= 16 )
{
#ifdef IBMPC
*p++ = 0;
#endif
#ifdef MIEEE
*p-- = 0;
#endif
e -= 16;
}
/* clear the remaining bits */
if( e > 0 )
*p &= bmask[e];
if( (x < 0) && (u.y != x) )
u.y -= 1.0L;
return(u.y);
}
long double frexpl( x, pw2 )
long double x;
int *pw2;
{
union
{
long double y;
unsigned short sh[6];
} u;
int i, k;
short *q;
u.y = x;
#ifdef NANS
if(isnanl(x))
{
*pw2 = 0;
return(x);
}
#endif
#ifdef INFINITIES
if(x == -INFINITYL)
{
*pw2 = 0;
return(x);
}
#endif
#ifdef MINUSZERO
if(x == 0.0L)
{
*pw2 = 0;
return(x);
}
#endif
#ifdef UNK
mtherr( "frexpl", DOMAIN );
return(0.0L);
#endif
/* find the exponent (power of 2) */
#ifdef IBMPC
q = (short *)&u.sh[4];
i = *q & 0x7fff;
#endif
#ifdef MIEEE
q = (short *)&u.sh[0];
i = *q & 0x7fff;
#endif
if( i == 0 )
{
if( u.y == 0.0L )
{
*pw2 = 0;
return(0.0L);
}
/* Number is denormal or zero */
#ifdef DENORMAL
/* Handle denormal number. */
do
{
u.y *= 2.0L;
i -= 1;
k = *q & 0x7fff;
}
while( (k == 0) && (i > -66) );
i = i + k;
#else
*pw2 = 0;
return(0.0L);
#endif /* DENORMAL */
}
*pw2 = i - 0x3ffe;
/* *q = 0x3ffe; */
/* Preserve sign of argument. */
*q &= 0x8000;
*q |= 0x3ffe;
return( u.y );
}
long double ldexpl( x, pw2 )
long double x;
int pw2;
{
union
{
long double y;
unsigned short sh[6];
} u;
unsigned short *q;
long e;
#ifdef UNK
mtherr( "ldexp", DOMAIN );
return(0.0L);
#endif
u.y = x;
#ifdef IBMPC
q = (unsigned short *)&u.sh[4];
#endif
#ifdef MIEEE
q = (unsigned short *)&u.sh[0];
#endif
while( (e = (*q & 0x7fffL)) == 0 )
{
#ifdef DENORMAL
if( u.y == 0.0L )
{
return( 0.0L );
}
/* Input is denormal. */
if( pw2 > 0 )
{
u.y *= 2.0L;
pw2 -= 1;
}
if( pw2 < 0 )
{
if( pw2 < -64 )
return(0.0L);
u.y *= 0.5L;
pw2 += 1;
}
if( pw2 == 0 )
return(u.y);
#else
return( 0.0L );
#endif
}
e = e + pw2;
/* Handle overflow */
if( e > 0x7fffL )
{
return( MAXNUML );
}
*q &= 0x8000;
/* Handle denormalized results */
if( e < 1 )
{
#ifdef DENORMAL
if( e < -64 )
return(0.0L);
#ifdef IBMPC
*(q-1) |= 0x8000;
#endif
#ifdef MIEEE
*(q+2) |= 0x8000;
#endif
while( e < 1 )
{
u.y *= 0.5L;
e += 1;
}
e = 0;
#else
return(0.0L);
#endif
}
*q |= (unsigned short) e & 0x7fff;
return(u.y);
}
|