1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
/* expl.c
*
* Exponential function, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, expl();
*
* y = expl( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* A Pade' form of degree 2/3 is used to approximate exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-10000 50000 1.12e-19 2.81e-20
*
*
* Error amplification in the exponential function can be
* a serious matter. The error propagation involves
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
* which shows that a 1 lsb error in representing X produces
* a relative error of X times 1 lsb in the function.
* While the routine gives an accurate result for arguments
* that are exactly represented by a long double precision
* computer number, the result contains amplified roundoff
* error for large arguments not exactly represented.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* exp underflow x < MINLOG 0.0
* exp overflow x > MAXLOG MAXNUM
*
*/
/*
Cephes Math Library Release 2.7: May, 1998
Copyright 1984, 1990, 1998 by Stephen L. Moshier
*/
/* Exponential function */
#include <math.h>
#ifdef UNK
static long double P[3] = {
1.2617719307481059087798E-4L,
3.0299440770744196129956E-2L,
9.9999999999999999991025E-1L,
};
static long double Q[4] = {
3.0019850513866445504159E-6L,
2.5244834034968410419224E-3L,
2.2726554820815502876593E-1L,
2.0000000000000000000897E0L,
};
static long double C1 = 6.9314575195312500000000E-1L;
static long double C2 = 1.4286068203094172321215E-6L;
#endif
#ifdef DEC
not supported in long double precision
#endif
#ifdef IBMPC
static short P[] = {
0x424e,0x225f,0x6eaf,0x844e,0x3ff2, XPD
0xf39e,0x5163,0x8866,0xf836,0x3ff9, XPD
0xfffe,0xffff,0xffff,0xffff,0x3ffe, XPD
};
static short Q[] = {
0xff1e,0xb2fc,0xb5e1,0xc975,0x3fec, XPD
0xff3e,0x45b5,0xcda8,0xa571,0x3ff6, XPD
0x9ee1,0x3f03,0x4cc4,0xe8b8,0x3ffc, XPD
0x0000,0x0000,0x0000,0x8000,0x4000, XPD
};
static short sc1[] = {0x0000,0x0000,0x0000,0xb172,0x3ffe, XPD};
#define C1 (*(long double *)sc1)
static short sc2[] = {0x4f1e,0xcd5e,0x8e7b,0xbfbe,0x3feb, XPD};
#define C2 (*(long double *)sc2)
#endif
#ifdef MIEEE
static long P[9] = {
0x3ff20000,0x844e6eaf,0x225f424e,
0x3ff90000,0xf8368866,0x5163f39e,
0x3ffe0000,0xffffffff,0xfffffffe,
};
static long Q[12] = {
0x3fec0000,0xc975b5e1,0xb2fcff1e,
0x3ff60000,0xa571cda8,0x45b5ff3e,
0x3ffc0000,0xe8b84cc4,0x3f039ee1,
0x40000000,0x80000000,0x00000000,
};
static long sc1[] = {0x3ffe0000,0xb1720000,0x00000000};
#define C1 (*(long double *)sc1)
static long sc2[] = {0x3feb0000,0xbfbe8e7b,0xcd5e4f1e};
#define C2 (*(long double *)sc2)
#endif
extern long double LOG2EL, MAXLOGL, MINLOGL, MAXNUML;
#ifdef ANSIPROT
extern long double polevll ( long double, void *, int );
extern long double floorl ( long double );
extern long double ldexpl ( long double, int );
extern int isnanl ( long double );
#else
long double polevll(), floorl(), ldexpl(), isnanl();
#endif
#ifdef INFINITIES
extern long double INFINITYL;
#endif
long double expl(x)
long double x;
{
long double px, xx;
int n;
#ifdef NANS
if( isnanl(x) )
return(x);
#endif
if( x > MAXLOGL)
{
#ifdef INFINITIES
return( INFINITYL );
#else
mtherr( "expl", OVERFLOW );
return( MAXNUML );
#endif
}
if( x < MINLOGL )
{
#ifndef INFINITIES
mtherr( "expl", UNDERFLOW );
#endif
return(0.0L);
}
/* Express e**x = e**g 2**n
* = e**g e**( n loge(2) )
* = e**( g + n loge(2) )
*/
px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
n = px;
x -= px * C1;
x -= px * C2;
/* rational approximation for exponential
* of the fractional part:
* e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
*/
xx = x * x;
px = x * polevll( xx, P, 2 );
x = px/( polevll( xx, Q, 3 ) - px );
x = 1.0L + ldexpl( x, 1 );
x = ldexpl( x, n );
return(x);
}
|