summaryrefslogtreecommitdiff
path: root/libm/ldouble/ellpkl.c
blob: dd42ac86108c3a69a7e08ea4899e117d06f6b080 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*							ellpkl.c
 *
 *	Complete elliptic integral of the first kind
 *
 *
 *
 * SYNOPSIS:
 *
 * long double m1, y, ellpkl();
 *
 * y = ellpkl( m1 );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *
 *            pi/2
 *             -
 *            | |
 *            |           dt
 * K(m)  =    |    ------------------
 *            |                   2
 *          | |    sqrt( 1 - m sin t )
 *           -
 *            0
 *
 * where m = 1 - m1, using the approximation
 *
 *     P(x)  -  log x Q(x).
 *
 * The argument m1 is used rather than m so that the logarithmic
 * singularity at m = 1 will be shifted to the origin; this
 * preserves maximum accuracy.
 *
 * K(0) = pi/2.
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,1        10000       1.1e-19     3.3e-20
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * ellpkl domain      x<0, x>1           0.0
 *
 */

/*							ellpkl.c */


/*
Cephes Math Library, Release 2.3:  October, 1995
Copyright 1984, 1987, 1995 by Stephen L. Moshier
*/

#include <math.h>

#if UNK
static long double P[13] = {
 1.247539729154838838628E-6L,
 2.149421654232011240659E-4L,
 2.265267575136470585139E-3L,
 6.723088676584254248821E-3L,
 8.092066790639263075808E-3L,
 5.664069509748147028621E-3L,
 4.579865994050801042865E-3L,
 5.797368411662027645234E-3L,
 8.767698209432225911803E-3L,
 1.493761594388688915057E-2L,
 3.088514457872042326871E-2L,
 9.657359027999314232753E-2L,
 1.386294361119890618992E0L,
};
static long double Q[12] = {
 5.568631677757315398993E-5L,
 1.036110372590318802997E-3L,
 5.500459122138244213579E-3L,
 1.337330436245904844528E-2L,
 2.033103735656990487115E-2L,
 2.522868345512332304268E-2L,
 3.026786461242788135379E-2L,
 3.738370118296930305919E-2L,
 4.882812208418620146046E-2L,
 7.031249999330222751046E-2L,
 1.249999999999978263154E-1L,
 4.999999999999999999924E-1L,
};
static long double C1 = 1.386294361119890618834L; /* log(4) */
#endif
#if IBMPC
static short P[] = {
0xf098,0xad01,0x2381,0xa771,0x3feb, XPD
0xd6ed,0xea22,0x1922,0xe162,0x3ff2, XPD
0x3733,0xe2f1,0xe226,0x9474,0x3ff6, XPD
0x3031,0x3c9d,0x5aff,0xdc4d,0x3ff7, XPD
0x9a46,0x4310,0x968e,0x8494,0x3ff8, XPD
0xbe4c,0x3ff2,0xa8a7,0xb999,0x3ff7, XPD
0xf35c,0x0eaf,0xb355,0x9612,0x3ff7, XPD
0xbc56,0x8fd4,0xd9dd,0xbdf7,0x3ff7, XPD
0xc01e,0x867f,0x6444,0x8fa6,0x3ff8, XPD
0x4ba3,0x6392,0xe6fd,0xf4bc,0x3ff8, XPD
0x62c3,0xbb12,0xd7bc,0xfd02,0x3ff9, XPD
0x08fe,0x476c,0x5fdf,0xc5c8,0x3ffb, XPD
0x79ad,0xd1cf,0x17f7,0xb172,0x3fff, XPD
};
static short Q[] = {
0x96a4,0x8474,0xba33,0xe990,0x3ff0, XPD
0xe5a7,0xa50e,0x1854,0x87ce,0x3ff5, XPD
0x8999,0x72e3,0x3205,0xb43d,0x3ff7, XPD
0x3255,0x13eb,0xb438,0xdb1b,0x3ff8, XPD
0xb717,0x497f,0x4691,0xa68d,0x3ff9, XPD
0x30be,0x8c6b,0x624b,0xceac,0x3ff9, XPD
0xa858,0x2a0d,0x5014,0xf7f4,0x3ff9, XPD
0x8615,0xbfa6,0xa6df,0x991f,0x3ffa, XPD
0x103c,0xa076,0xff37,0xc7ff,0x3ffa, XPD
0xf508,0xc515,0xffff,0x8fff,0x3ffb, XPD
0x1af5,0xfffb,0xffff,0xffff,0x3ffb, XPD
0x0000,0x0000,0x0000,0x8000,0x3ffe, XPD
};
static unsigned short ac1[] = {
0x79ac,0xd1cf,0x17f7,0xb172,0x3fff, XPD
};
#define C1 (*(long double *)ac1)
#endif

#ifdef MIEEE
static long P[39] = {
0x3feb0000,0xa7712381,0xad01f098,
0x3ff20000,0xe1621922,0xea22d6ed,
0x3ff60000,0x9474e226,0xe2f13733,
0x3ff70000,0xdc4d5aff,0x3c9d3031,
0x3ff80000,0x8494968e,0x43109a46,
0x3ff70000,0xb999a8a7,0x3ff2be4c,
0x3ff70000,0x9612b355,0x0eaff35c,
0x3ff70000,0xbdf7d9dd,0x8fd4bc56,
0x3ff80000,0x8fa66444,0x867fc01e,
0x3ff80000,0xf4bce6fd,0x63924ba3,
0x3ff90000,0xfd02d7bc,0xbb1262c3,
0x3ffb0000,0xc5c85fdf,0x476c08fe,
0x3fff0000,0xb17217f7,0xd1cf79ad,
};
static long Q[36] = {
0x3ff00000,0xe990ba33,0x847496a4,
0x3ff50000,0x87ce1854,0xa50ee5a7,
0x3ff70000,0xb43d3205,0x72e38999,
0x3ff80000,0xdb1bb438,0x13eb3255,
0x3ff90000,0xa68d4691,0x497fb717,
0x3ff90000,0xceac624b,0x8c6b30be,
0x3ff90000,0xf7f45014,0x2a0da858,
0x3ffa0000,0x991fa6df,0xbfa68615,
0x3ffa0000,0xc7ffff37,0xa076103c,
0x3ffb0000,0x8fffffff,0xc515f508,
0x3ffb0000,0xffffffff,0xfffb1af5,
0x3ffe0000,0x80000000,0x00000000,
};
static unsigned long ac1[] = {
0x3fff0000,0xb17217f7,0xd1cf79ac
};
#define C1 (*(long double *)ac1)
#endif


#ifdef ANSIPROT
extern long double polevll ( long double, void *, int );
extern long double logl ( long double );
#else
long double polevll(), logl();
#endif
extern long double MACHEPL, MAXNUML;

long double ellpkl(x)
long double x;
{

if( (x < 0.0L) || (x > 1.0L) )
	{
	mtherr( "ellpkl", DOMAIN );
	return( 0.0L );
	}

if( x > MACHEPL )
	{
	return( polevll(x,P,12) - logl(x) * polevll(x,Q,11) );
	}
else
	{
	if( x == 0.0L )
		{
		mtherr( "ellpkl", SING );
		return( MAXNUML );
		}
	else
		{
		return( C1 - 0.5L * logl(x) );
		}
	}
}