1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
/* ellpjl.c
*
* Jacobian Elliptic Functions
*
*
*
* SYNOPSIS:
*
* long double u, m, sn, cn, dn, phi;
* int ellpjl();
*
* ellpjl( u, m, _&sn, _&cn, _&dn, _&phi );
*
*
*
* DESCRIPTION:
*
*
* Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
* and dn(u|m) of parameter m between 0 and 1, and real
* argument u.
*
* These functions are periodic, with quarter-period on the
* real axis equal to the complete elliptic integral
* ellpk(1.0-m).
*
* Relation to incomplete elliptic integral:
* If u = ellik(phi,m), then sn(u|m) = sin(phi),
* and cn(u|m) = cos(phi). Phi is called the amplitude of u.
*
* Computation is by means of the arithmetic-geometric mean
* algorithm, except when m is within 1e-12 of 0 or 1. In the
* latter case with m close to 1, the approximation applies
* only for phi < pi/2.
*
* ACCURACY:
*
* Tested at random points with u between 0 and 10, m between
* 0 and 1.
*
* Absolute error (* = relative error):
* arithmetic function # trials peak rms
* IEEE sn 10000 1.7e-18 2.3e-19
* IEEE cn 20000 1.6e-18 2.2e-19
* IEEE dn 10000 4.7e-15 2.7e-17
* IEEE phi 10000 4.0e-19* 6.6e-20*
*
* Accuracy deteriorates when u is large.
*
*/
/*
Cephes Math Library Release 2.3: November, 1995
Copyright 1984, 1987, 1995 by Stephen L. Moshier
*/
#include <math.h>
#ifdef ANSIPROT
extern long double sqrtl ( long double );
extern long double fabsl ( long double );
extern long double sinl ( long double );
extern long double cosl ( long double );
extern long double asinl ( long double );
extern long double tanhl ( long double );
extern long double sinhl ( long double );
extern long double coshl ( long double );
extern long double atanl ( long double );
extern long double expl ( long double );
#else
long double sqrtl(), fabsl(), sinl(), cosl(), asinl(), tanhl();
long double sinhl(), coshl(), atanl(), expl();
#endif
extern long double PIO2L, MACHEPL;
int ellpjl( u, m, sn, cn, dn, ph )
long double u, m;
long double *sn, *cn, *dn, *ph;
{
long double ai, b, phi, t, twon;
long double a[9], c[9];
int i;
/* Check for special cases */
if( m < 0.0L || m > 1.0L )
{
mtherr( "ellpjl", DOMAIN );
*sn = 0.0L;
*cn = 0.0L;
*ph = 0.0L;
*dn = 0.0L;
return(-1);
}
if( m < 1.0e-12L )
{
t = sinl(u);
b = cosl(u);
ai = 0.25L * m * (u - t*b);
*sn = t - ai*b;
*cn = b + ai*t;
*ph = u - ai;
*dn = 1.0L - 0.5L*m*t*t;
return(0);
}
if( m >= 0.999999999999L )
{
ai = 0.25L * (1.0L-m);
b = coshl(u);
t = tanhl(u);
phi = 1.0L/b;
twon = b * sinhl(u);
*sn = t + ai * (twon - u)/(b*b);
*ph = 2.0L*atanl(expl(u)) - PIO2L + ai*(twon - u)/b;
ai *= t * phi;
*cn = phi - ai * (twon - u);
*dn = phi + ai * (twon + u);
return(0);
}
/* A. G. M. scale */
a[0] = 1.0L;
b = sqrtl(1.0L - m);
c[0] = sqrtl(m);
twon = 1.0L;
i = 0;
while( fabsl(c[i]/a[i]) > MACHEPL )
{
if( i > 7 )
{
mtherr( "ellpjl", OVERFLOW );
goto done;
}
ai = a[i];
++i;
c[i] = 0.5L * ( ai - b );
t = sqrtl( ai * b );
a[i] = 0.5L * ( ai + b );
b = t;
twon *= 2.0L;
}
done:
/* backward recurrence */
phi = twon * a[i] * u;
do
{
t = c[i] * sinl(phi) / a[i];
b = phi;
phi = 0.5L * (asinl(t) + phi);
}
while( --i );
*sn = sinl(phi);
t = cosl(phi);
*cn = t;
*dn = t/cosl(phi-b);
*ph = phi;
return(0);
}
|