summaryrefslogtreecommitdiff
path: root/libm/ldouble/elliel.c
blob: 851914454006190cdc9dc655b6e00ed19db216d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*							elliel.c
 *
 *	Incomplete elliptic integral of the second kind
 *
 *
 *
 * SYNOPSIS:
 *
 * long double phi, m, y, elliel();
 *
 * y = elliel( phi, m );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *
 *                phi
 *                 -
 *                | |
 *                |                   2
 * E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
 *                |
 *              | |    
 *               -
 *                0
 *
 * of amplitude phi and modulus m, using the arithmetic -
 * geometric mean algorithm.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at random arguments with phi in [-10, 10] and m in
 * [0, 1].
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     -10,10       50000       2.7e-18     2.3e-19
 *
 *
 */


/*
Cephes Math Library Release 2.3:  November, 1995
Copyright 1984, 1987, 1993, 1995 by Stephen L. Moshier
*/

/*	Incomplete elliptic integral of second kind	*/

#include <math.h>
#ifdef ANSIPROT
extern long double sqrtl ( long double );
extern long double fabsl ( long double );
extern long double logl ( long double );
extern long double sinl ( long double );
extern long double tanl ( long double );
extern long double atanl ( long double );
extern long double floorl ( long double );
extern long double ellpel ( long double );
extern long double ellpkl ( long double );
long double elliel ( long double, long double );
#else
long double sqrtl(), fabsl(), logl(), sinl(), tanl(), atanl(), floorl();
long double ellpel(), ellpkl(), elliel();
#endif
extern long double PIL, PIO2L, MACHEPL;


long double elliel( phi, m )
long double phi, m;
{
long double a, b, c, e, temp, lphi, t, E;
int d, mod, npio2, sign;

if( m == 0.0L )
	return( phi );
lphi = phi;
npio2 = floorl( lphi/PIO2L );
if( npio2 & 1 )
	npio2 += 1;
lphi = lphi - npio2 * PIO2L;
if( lphi < 0.0L )
	{
	lphi = -lphi;
	sign = -1;
	}
else
	{
	sign = 1;
	}
a = 1.0L - m;
E = ellpel( a );
if( a == 0.0L )
	{
	temp = sinl( lphi );
	goto done;
	}
t = tanl( lphi );
b = sqrtl(a);
if( fabsl(t) > 10.0L )
	{
	/* Transform the amplitude */
	e = 1.0L/(b*t);
	/* ... but avoid multiple recursions.  */
	if( fabsl(e) < 10.0L )
		{
		e = atanl(e);
		temp = E + m * sinl( lphi ) * sinl( e ) - elliel( e, m );
		goto done;
		}
	}
c = sqrtl(m);
a = 1.0L;
d = 1;
e = 0.0L;
mod = 0;

while( fabsl(c/a) > MACHEPL )
	{
	temp = b/a;
	lphi = lphi + atanl(t*temp) + mod * PIL;
	mod = (lphi + PIO2L)/PIL;
	t = t * ( 1.0L + temp )/( 1.0L - temp * t * t );
	c = 0.5L*( a - b );
	temp = sqrtl( a * b );
	a = 0.5L*( a + b );
	b = temp;
	d += d;
	e += c * sinl(lphi);
	}

temp = E / ellpkl( 1.0L - m );
temp *= (atanl(t) + mod * PIL)/(d * a);
temp += e;

done:

if( sign < 0 )
	temp = -temp;
temp += npio2 * E;
return( temp );
}