1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/* bdtrl.c
*
* Binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, bdtrl();
*
* y = bdtrl( k, n, p );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms 0 through k of the Binomial
* probability density:
*
* k
* -- ( n ) j n-j
* > ( ) p (1-p)
* -- ( j )
* j=0
*
* The terms are not summed directly; instead the incomplete
* beta integral is employed, according to the formula
*
* y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
*
*
* ACCURACY:
*
* Tested at random points (k,n,p) with a and b between 0
* and 10000 and p between 0 and 1.
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,10000 3000 1.6e-14 2.2e-15
*
* ERROR MESSAGES:
*
* message condition value returned
* bdtrl domain k < 0 0.0
* n < k
* x < 0, x > 1
*
*/
/* bdtrcl()
*
* Complemented binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, bdtrcl();
*
* y = bdtrcl( k, n, p );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms k+1 through n of the Binomial
* probability density:
*
* n
* -- ( n ) j n-j
* > ( ) p (1-p)
* -- ( j )
* j=k+1
*
* The terms are not summed directly; instead the incomplete
* beta integral is employed, according to the formula
*
* y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
*
*
* ACCURACY:
*
* See incbet.c.
*
* ERROR MESSAGES:
*
* message condition value returned
* bdtrcl domain x<0, x>1, n<k 0.0
*/
/* bdtril()
*
* Inverse binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, bdtril();
*
* p = bdtril( k, n, y );
*
*
*
* DESCRIPTION:
*
* Finds the event probability p such that the sum of the
* terms 0 through k of the Binomial probability density
* is equal to the given cumulative probability y.
*
* This is accomplished using the inverse beta integral
* function and the relation
*
* 1 - p = incbi( n-k, k+1, y ).
*
* ACCURACY:
*
* See incbi.c.
* Tested at random k, n between 1 and 10000. The "domain" refers to p:
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,1 3500 2.0e-15 8.2e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* bdtril domain k < 0, n <= k 0.0
* x < 0, x > 1
*/
/* bdtr() */
/*
Cephes Math Library Release 2.3: March, 1995
Copyright 1984, 1995 by Stephen L. Moshier
*/
#include <math.h>
#ifdef ANSIPROT
extern long double incbetl ( long double, long double, long double );
extern long double incbil ( long double, long double, long double );
extern long double powl ( long double, long double );
extern long double expm1l ( long double );
extern long double log1pl ( long double );
#else
long double incbetl(), incbil(), powl(), expm1l(), log1pl();
#endif
long double bdtrcl( k, n, p )
int k, n;
long double p;
{
long double dk, dn;
if( (p < 0.0L) || (p > 1.0L) )
goto domerr;
if( k < 0 )
return( 1.0L );
if( n < k )
{
domerr:
mtherr( "bdtrcl", DOMAIN );
return( 0.0L );
}
if( k == n )
return( 0.0L );
dn = n - k;
if( k == 0 )
{
if( p < .01L )
dk = -expm1l( dn * log1pl(-p) );
else
dk = 1.0L - powl( 1.0L-p, dn );
}
else
{
dk = k + 1;
dk = incbetl( dk, dn, p );
}
return( dk );
}
long double bdtrl( k, n, p )
int k, n;
long double p;
{
long double dk, dn, q;
if( (p < 0.0L) || (p > 1.0L) )
goto domerr;
if( (k < 0) || (n < k) )
{
domerr:
mtherr( "bdtrl", DOMAIN );
return( 0.0L );
}
if( k == n )
return( 1.0L );
q = 1.0L - p;
dn = n - k;
if( k == 0 )
{
dk = powl( q, dn );
}
else
{
dk = k + 1;
dk = incbetl( dn, dk, q );
}
return( dk );
}
long double bdtril( k, n, y )
int k, n;
long double y;
{
long double dk, dn, p;
if( (y < 0.0L) || (y > 1.0L) )
goto domerr;
if( (k < 0) || (n <= k) )
{
domerr:
mtherr( "bdtril", DOMAIN );
return( 0.0L );
}
dn = n - k;
if( k == 0 )
{
if( y > 0.8L )
p = -expm1l( log1pl(y-1.0L) / dn );
else
p = 1.0L - powl( y, 1.0L/dn );
}
else
{
dk = k + 1;
p = incbetl( dn, dk, y );
if( p > 0.5 )
p = incbil( dk, dn, 1.0L-y );
else
p = 1.0 - incbil( dn, dk, y );
}
return( p );
}
|