1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
/* tandgf.c
*
* Circular tangent of angle in degrees
*
*
*
* SYNOPSIS:
*
* float x, y, tandgf();
*
* y = tandgf( x );
*
*
*
* DESCRIPTION:
*
* Returns the circular tangent of the radian argument x.
*
* Range reduction is into intervals of 45 degrees.
*
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-2^24 50000 2.4e-7 4.8e-8
*
* ERROR MESSAGES:
*
* message condition value returned
* tanf total loss x > 2^24 0.0
*
*/
/* cotdgf.c
*
* Circular cotangent of angle in degrees
*
*
*
* SYNOPSIS:
*
* float x, y, cotdgf();
*
* y = cotdgf( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of 45 degrees.
* A common routine computes either the tangent or cotangent.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-2^24 50000 2.4e-7 4.8e-8
*
*
* ERROR MESSAGES:
*
* message condition value returned
* cot total loss x > 2^24 0.0
* cot singularity x = 0 MAXNUMF
*
*/
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* Single precision circular tangent
* test interval: [-pi/4, +pi/4]
* trials: 10000
* peak relative error: 8.7e-8
* rms relative error: 2.8e-8
*/
#include <math.h>
extern float MAXNUMF;
static float T24M1 = 16777215.;
static float PI180 = 0.0174532925199432957692; /* pi/180 */
static float tancotf( float xx, int cotflg )
{
float x, y, z, zz;
long j;
int sign;
/* make argument positive but save the sign */
if( xx < 0.0 )
{
x = -xx;
sign = -1;
}
else
{
x = xx;
sign = 1;
}
if( x > T24M1 )
{
if( cotflg )
mtherr( "cotdgf", TLOSS );
else
mtherr( "tandgf", TLOSS );
return(0.0);
}
/* compute x mod PIO4 */
j = 0.022222222222222222222 * x; /* integer part of x/45 */
y = j;
/* map zeros and singularities to origin */
if( j & 1 )
{
j += 1;
y += 1.0;
}
z = x - y * 45.0;
z *= PI180; /* multiply by pi/180 to convert to radians */
zz = z * z;
if( x > 1.0e-4 )
{
/* 1.7e-8 relative error in [-pi/4, +pi/4] */
y =
((((( 9.38540185543E-3 * zz
+ 3.11992232697E-3) * zz
+ 2.44301354525E-2) * zz
+ 5.34112807005E-2) * zz
+ 1.33387994085E-1) * zz
+ 3.33331568548E-1) * zz * z
+ z;
}
else
{
y = z;
}
if( j & 2 )
{
if( cotflg )
y = -y;
else
{
if( y != 0.0 )
{
y = -1.0/y;
}
else
{
mtherr( "tandgf", SING );
y = MAXNUMF;
}
}
}
else
{
if( cotflg )
{
if( y != 0.0 )
y = 1.0/y;
else
{
mtherr( "cotdgf", SING );
y = MAXNUMF;
}
}
}
if( sign < 0 )
y = -y;
return( y );
}
float tandgf( float x )
{
return( tancotf(x,0) );
}
float cotdgf( float x )
{
if( x == 0.0 )
{
mtherr( "cotdgf", SING );
return( MAXNUMF );
}
return( tancotf(x,1) );
}
|