1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/* stdtrf.c
*
* Student's t distribution
*
*
*
* SYNOPSIS:
*
* float t, stdtrf();
* short k;
*
* y = stdtrf( k, t );
*
*
* DESCRIPTION:
*
* Computes the integral from minus infinity to t of the Student
* t distribution with integer k > 0 degrees of freedom:
*
* t
* -
* | |
* - | 2 -(k+1)/2
* | ( (k+1)/2 ) | ( x )
* ---------------------- | ( 1 + --- ) dx
* - | ( k )
* sqrt( k pi ) | ( k/2 ) |
* | |
* -
* -inf.
*
* Relation to incomplete beta integral:
*
* 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
* where
* z = k/(k + t**2).
*
* For t < -1, this is the method of computation. For higher t,
* a direct method is derived from integration by parts.
* Since the function is symmetric about t=0, the area under the
* right tail of the density is found by calling the function
* with -t instead of t.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +/- 100 5000 2.3e-5 2.9e-6
*/
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
extern float PIF, MACHEPF;
#ifdef ANSIC
float sqrtf(float), atanf(float), incbetf(float, float, float);
#else
float sqrtf(), atanf(), incbetf();
#endif
float stdtrf( int k, float tt )
{
float t, x, rk, z, f, tz, p, xsqk;
int j;
t = tt;
if( k <= 0 )
{
mtherr( "stdtrf", DOMAIN );
return(0.0);
}
if( t == 0 )
return( 0.5 );
if( t < -1.0 )
{
rk = k;
z = rk / (rk + t * t);
p = 0.5 * incbetf( 0.5*rk, 0.5, z );
return( p );
}
/* compute integral from -t to + t */
if( t < 0 )
x = -t;
else
x = t;
rk = k; /* degrees of freedom */
z = 1.0 + ( x * x )/rk;
/* test if k is odd or even */
if( (k & 1) != 0)
{
/* computation for odd k */
xsqk = x/sqrtf(rk);
p = atanf( xsqk );
if( k > 1 )
{
f = 1.0;
tz = 1.0;
j = 3;
while( (j<=(k-2)) && ( (tz/f) > MACHEPF ) )
{
tz *= (j-1)/( z * j );
f += tz;
j += 2;
}
p += f * xsqk/z;
}
p *= 2.0/PIF;
}
else
{
/* computation for even k */
f = 1.0;
tz = 1.0;
j = 2;
while( ( j <= (k-2) ) && ( (tz/f) > MACHEPF ) )
{
tz *= (j - 1)/( z * j );
f += tz;
j += 2;
}
p = f * x/sqrtf(z*rk);
}
/* common exit */
if( t < 0 )
p = -p; /* note destruction of relative accuracy */
p = 0.5 + 0.5 * p;
return(p);
}
|