1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
/* pdtrf.c
*
* Poisson distribution
*
*
*
* SYNOPSIS:
*
* int k;
* float m, y, pdtrf();
*
* y = pdtrf( k, m );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the first k terms of the Poisson
* distribution:
*
* k j
* -- -m m
* > e --
* -- j!
* j=0
*
* The terms are not summed directly; instead the incomplete
* gamma integral is employed, according to the relation
*
* y = pdtr( k, m ) = igamc( k+1, m ).
*
* The arguments must both be positive.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,100 5000 6.9e-5 8.0e-6
*
*/
/* pdtrcf()
*
* Complemented poisson distribution
*
*
*
* SYNOPSIS:
*
* int k;
* float m, y, pdtrcf();
*
* y = pdtrcf( k, m );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms k+1 to infinity of the Poisson
* distribution:
*
* inf. j
* -- -m m
* > e --
* -- j!
* j=k+1
*
* The terms are not summed directly; instead the incomplete
* gamma integral is employed, according to the formula
*
* y = pdtrc( k, m ) = igam( k+1, m ).
*
* The arguments must both be positive.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,100 5000 8.4e-5 1.2e-5
*
*/
/* pdtrif()
*
* Inverse Poisson distribution
*
*
*
* SYNOPSIS:
*
* int k;
* float m, y, pdtrf();
*
* m = pdtrif( k, y );
*
*
*
*
* DESCRIPTION:
*
* Finds the Poisson variable x such that the integral
* from 0 to x of the Poisson density is equal to the
* given probability y.
*
* This is accomplished using the inverse gamma integral
* function and the relation
*
* m = igami( k+1, y ).
*
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,100 5000 8.7e-6 1.4e-6
*
* ERROR MESSAGES:
*
* message condition value returned
* pdtri domain y < 0 or y >= 1 0.0
* k < 0
*
*/
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
#ifdef ANSIC
float igamf(float, float), igamcf(float, float), igamif(float, float);
#else
float igamf(), igamcf(), igamif();
#endif
float pdtrcf( int k, float mm )
{
float v, m;
m = mm;
if( (k < 0) || (m <= 0.0) )
{
mtherr( "pdtrcf", DOMAIN );
return( 0.0 );
}
v = k+1;
return( igamf( v, m ) );
}
float pdtrf( int k, float mm )
{
float v, m;
m = mm;
if( (k < 0) || (m <= 0.0) )
{
mtherr( "pdtr", DOMAIN );
return( 0.0 );
}
v = k+1;
return( igamcf( v, m ) );
}
float pdtrif( int k, float yy )
{
float v, y;
y = yy;
if( (k < 0) || (y < 0.0) || (y >= 1.0) )
{
mtherr( "pdtrif", DOMAIN );
return( 0.0 );
}
v = k+1;
v = igamif( v, y );
return( v );
}
|