1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/* ndtrf.c
*
* Normal distribution function
*
*
*
* SYNOPSIS:
*
* float x, y, ndtrf();
*
* y = ndtrf( x );
*
*
*
* DESCRIPTION:
*
* Returns the area under the Gaussian probability density
* function, integrated from minus infinity to x:
*
* x
* -
* 1 | | 2
* ndtr(x) = --------- | exp( - t /2 ) dt
* sqrt(2pi) | |
* -
* -inf.
*
* = ( 1 + erf(z) ) / 2
* = erfc(z) / 2
*
* where z = x/sqrt(2). Computation is via the functions
* erf and erfc.
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -13,0 50000 1.5e-5 2.6e-6
*
*
* ERROR MESSAGES:
*
* See erfcf().
*
*/
/* erff.c
*
* Error function
*
*
*
* SYNOPSIS:
*
* float x, y, erff();
*
* y = erff( x );
*
*
*
* DESCRIPTION:
*
* The integral is
*
* x
* -
* 2 | | 2
* erf(x) = -------- | exp( - t ) dt.
* sqrt(pi) | |
* -
* 0
*
* The magnitude of x is limited to 9.231948545 for DEC
* arithmetic; 1 or -1 is returned outside this range.
*
* For 0 <= |x| < 1, erf(x) = x * P(x**2); otherwise
* erf(x) = 1 - erfc(x).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -9.3,9.3 50000 1.7e-7 2.8e-8
*
*/
/* erfcf.c
*
* Complementary error function
*
*
*
* SYNOPSIS:
*
* float x, y, erfcf();
*
* y = erfcf( x );
*
*
*
* DESCRIPTION:
*
*
* 1 - erf(x) =
*
* inf.
* -
* 2 | | 2
* erfc(x) = -------- | exp( - t ) dt
* sqrt(pi) | |
* -
* x
*
*
* For small x, erfc(x) = 1 - erf(x); otherwise polynomial
* approximations 1/x P(1/x**2) are computed.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -9.3,9.3 50000 3.9e-6 7.2e-7
*
*
* ERROR MESSAGES:
*
* message condition value returned
* erfcf underflow x**2 > MAXLOGF 0.0
*
*
*/
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1984, 1987, 1988 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
extern float MAXLOGF, SQRTHF;
/* erfc(x) = exp(-x^2) P(1/x), 1 < x < 2 */
static float P[] = {
2.326819970068386E-002,
-1.387039388740657E-001,
3.687424674597105E-001,
-5.824733027278666E-001,
6.210004621745983E-001,
-4.944515323274145E-001,
3.404879937665872E-001,
-2.741127028184656E-001,
5.638259427386472E-001
};
/* erfc(x) = exp(-x^2) 1/x P(1/x^2), 2 < x < 14 */
static float R[] = {
-1.047766399936249E+001,
1.297719955372516E+001,
-7.495518717768503E+000,
2.921019019210786E+000,
-1.015265279202700E+000,
4.218463358204948E-001,
-2.820767439740514E-001,
5.641895067754075E-001
};
/* erf(x) = x P(x^2), 0 < x < 1 */
static float T[] = {
7.853861353153693E-005,
-8.010193625184903E-004,
5.188327685732524E-003,
-2.685381193529856E-002,
1.128358514861418E-001,
-3.761262582423300E-001,
1.128379165726710E+000
};
/*#define UTHRESH 37.519379347*/
#define UTHRESH 14.0
#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
#ifdef ANSIC
float polevlf(float, float *, int);
float expf(float), logf(float), erff(float), erfcf(float);
#else
float polevlf(), expf(), logf(), erff(), erfcf();
#endif
float ndtrf(float aa)
{
float x, y, z;
x = aa;
x *= SQRTHF;
z = fabsf(x);
if( z < SQRTHF )
y = 0.5 + 0.5 * erff(x);
else
{
y = 0.5 * erfcf(z);
if( x > 0 )
y = 1.0 - y;
}
return(y);
}
float erfcf(float aa)
{
float a, p,q,x,y,z;
a = aa;
x = fabsf(a);
if( x < 1.0 )
return( 1.0 - erff(a) );
z = -a * a;
if( z < -MAXLOGF )
{
under:
mtherr( "erfcf", UNDERFLOW );
if( a < 0 )
return( 2.0 );
else
return( 0.0 );
}
z = expf(z);
q = 1.0/x;
y = q * q;
if( x < 2.0 )
{
p = polevlf( y, P, 8 );
}
else
{
p = polevlf( y, R, 7 );
}
y = z * q * p;
if( a < 0 )
y = 2.0 - y;
if( y == 0.0 )
goto under;
return(y);
}
float erff(float xx)
{
float x, y, z;
x = xx;
if( fabsf(x) > 1.0 )
return( 1.0 - erfcf(x) );
z = x * x;
y = x * polevlf( z, T, 6 );
return( y );
}
|