1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/* ellpkf.c
*
* Complete elliptic integral of the first kind
*
*
*
* SYNOPSIS:
*
* float m1, y, ellpkf();
*
* y = ellpkf( m1 );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*
* pi/2
* -
* | |
* | dt
* K(m) = | ------------------
* | 2
* | | sqrt( 1 - m sin t )
* -
* 0
*
* where m = 1 - m1, using the approximation
*
* P(x) - log x Q(x).
*
* The argument m1 is used rather than m so that the logarithmic
* singularity at m = 1 will be shifted to the origin; this
* preserves maximum accuracy.
*
* K(0) = pi/2.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,1 30000 1.3e-7 3.4e-8
*
* ERROR MESSAGES:
*
* message condition value returned
* ellpkf domain x<0, x>1 0.0
*
*/
/* ellpk.c */
/*
Cephes Math Library, Release 2.0: April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
static float P[] =
{
1.37982864606273237150E-4,
2.28025724005875567385E-3,
7.97404013220415179367E-3,
9.85821379021226008714E-3,
6.87489687449949877925E-3,
6.18901033637687613229E-3,
8.79078273952743772254E-3,
1.49380448916805252718E-2,
3.08851465246711995998E-2,
9.65735902811690126535E-2,
1.38629436111989062502E0
};
static float Q[] =
{
2.94078955048598507511E-5,
9.14184723865917226571E-4,
5.94058303753167793257E-3,
1.54850516649762399335E-2,
2.39089602715924892727E-2,
3.01204715227604046988E-2,
3.73774314173823228969E-2,
4.88280347570998239232E-2,
7.03124996963957469739E-2,
1.24999999999870820058E-1,
4.99999999999999999821E-1
};
static float C1 = 1.3862943611198906188E0; /* log(4) */
extern float MACHEPF, MAXNUMF;
float polevlf(float, float *, int);
float p1evlf(float, float *, int);
float logf(float);
float ellpkf(float xx)
{
float x;
x = xx;
if( (x < 0.0) || (x > 1.0) )
{
mtherr( "ellpkf", DOMAIN );
return( 0.0 );
}
if( x > MACHEPF )
{
return( polevlf(x,P,10) - logf(x) * polevlf(x,Q,10) );
}
else
{
if( x == 0.0 )
{
mtherr( "ellpkf", SING );
return( MAXNUMF );
}
else
{
return( C1 - 0.5 * logf(x) );
}
}
}
|