1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
/* dawsnf.c
*
* Dawson's Integral
*
*
*
* SYNOPSIS:
*
* float x, y, dawsnf();
*
* y = dawsnf( x );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
* x
* -
* 2 | | 2
* dawsn(x) = exp( -x ) | exp( t ) dt
* | |
* -
* 0
*
* Three different rational approximations are employed, for
* the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,10 50000 4.4e-7 6.3e-8
*
*
*/
/* dawsn.c */
/*
Cephes Math Library Release 2.1: January, 1989
Copyright 1984, 1987, 1989 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
/* Dawson's integral, interval 0 to 3.25 */
static float AN[10] = {
1.13681498971755972054E-11,
8.49262267667473811108E-10,
1.94434204175553054283E-8,
9.53151741254484363489E-7,
3.07828309874913200438E-6,
3.52513368520288738649E-4,
-8.50149846724410912031E-4,
4.22618223005546594270E-2,
-9.17480371773452345351E-2,
9.99999999999999994612E-1,
};
static float AD[11] = {
2.40372073066762605484E-11,
1.48864681368493396752E-9,
5.21265281010541664570E-8,
1.27258478273186970203E-6,
2.32490249820789513991E-5,
3.25524741826057911661E-4,
3.48805814657162590916E-3,
2.79448531198828973716E-2,
1.58874241960120565368E-1,
5.74918629489320327824E-1,
1.00000000000000000539E0,
};
/* interval 3.25 to 6.25 */
static float BN[11] = {
5.08955156417900903354E-1,
-2.44754418142697847934E-1,
9.41512335303534411857E-2,
-2.18711255142039025206E-2,
3.66207612329569181322E-3,
-4.23209114460388756528E-4,
3.59641304793896631888E-5,
-2.14640351719968974225E-6,
9.10010780076391431042E-8,
-2.40274520828250956942E-9,
3.59233385440928410398E-11,
};
static float BD[10] = {
/* 1.00000000000000000000E0,*/
-6.31839869873368190192E-1,
2.36706788228248691528E-1,
-5.31806367003223277662E-2,
8.48041718586295374409E-3,
-9.47996768486665330168E-4,
7.81025592944552338085E-5,
-4.55875153252442634831E-6,
1.89100358111421846170E-7,
-4.91324691331920606875E-9,
7.18466403235734541950E-11,
};
/* 6.25 to infinity */
static float CN[5] = {
-5.90592860534773254987E-1,
6.29235242724368800674E-1,
-1.72858975380388136411E-1,
1.64837047825189632310E-2,
-4.86827613020462700845E-4,
};
static float CD[5] = {
/* 1.00000000000000000000E0,*/
-2.69820057197544900361E0,
1.73270799045947845857E0,
-3.93708582281939493482E-1,
3.44278924041233391079E-2,
-9.73655226040941223894E-4,
};
extern float PIF, MACHEPF;
#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
#ifdef ANSIC
float polevlf(float, float *, int);
float p1evlf(float, float *, int);
#else
float polevlf(), p1evlf();
#endif
float dawsnf( float xxx )
{
float xx, x, y;
int sign;
xx = xxx;
sign = 1;
if( xx < 0.0 )
{
sign = -1;
xx = -xx;
}
if( xx < 3.25 )
{
x = xx*xx;
y = xx * polevlf( x, AN, 9 )/polevlf( x, AD, 10 );
return( sign * y );
}
x = 1.0/(xx*xx);
if( xx < 6.25 )
{
y = 1.0/xx + x * polevlf( x, BN, 10) / (p1evlf( x, BD, 10) * xx);
return( sign * 0.5 * y );
}
if( xx > 1.0e9 )
return( (sign * 0.5)/xx );
/* 6.25 to infinity */
y = 1.0/xx + x * polevlf( x, CN, 4) / (p1evlf( x, CD, 5) * xx);
return( sign * 0.5 * y );
}
|