1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
/* sindg.c
*
* Circular sine of angle in degrees
*
*
*
* SYNOPSIS:
*
* double x, y, sindg();
*
* y = sindg( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of 45 degrees.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the sine is approximated by
* x + x**3 P(x**2).
* Between pi/4 and pi/2 the cosine is represented as
* 1 - x**2 P(x**2).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC +-1000 3100 3.3e-17 9.0e-18
* IEEE +-1000 30000 2.3e-16 5.6e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* sindg total loss x > 8.0e14 (DEC) 0.0
* x > 1.0e14 (IEEE)
*
*/
/* cosdg.c
*
* Circular cosine of angle in degrees
*
*
*
* SYNOPSIS:
*
* double x, y, cosdg();
*
* y = cosdg( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of 45 degrees.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the cosine is approximated by
* 1 - x**2 P(x**2).
* Between pi/4 and pi/2 the sine is represented as
* x + x**3 P(x**2).
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC +-1000 3400 3.5e-17 9.1e-18
* IEEE +-1000 30000 2.1e-16 5.7e-17
* See also sin().
*
*/
/* Cephes Math Library Release 2.0: April, 1987
* Copyright 1985, 1987 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */
#include <math.h>
#ifdef UNK
static double sincof[] = {
1.58962301572218447952E-10,
-2.50507477628503540135E-8,
2.75573136213856773549E-6,
-1.98412698295895384658E-4,
8.33333333332211858862E-3,
-1.66666666666666307295E-1
};
static double coscof[] = {
1.13678171382044553091E-11,
-2.08758833757683644217E-9,
2.75573155429816611547E-7,
-2.48015872936186303776E-5,
1.38888888888806666760E-3,
-4.16666666666666348141E-2,
4.99999999999999999798E-1
};
static double PI180 = 1.74532925199432957692E-2; /* pi/180 */
static double lossth = 1.0e14;
#endif
#ifdef DEC
static unsigned short sincof[] = {
0030056,0143750,0177170,0073013,
0131727,0027455,0044510,0132205,
0033470,0167432,0131752,0042263,
0135120,0006400,0146776,0174027,
0036410,0104210,0104207,0137202,
0137452,0125252,0125252,0125103
};
static unsigned short coscof[] = {
0027107,0176030,0153315,0110312,
0131017,0072476,0007450,0123243,
0032623,0171174,0070066,0146445,
0134320,0006400,0147355,0163313,
0035666,0005540,0133012,0165067,
0137052,0125252,0125252,0125206,
0040000,0000000,0000000,0000000
};
static unsigned short P1[] = {0036616,0175065,0011224,0164711};
#define PI180 *(double *)P1
static double lossth = 8.0e14;
#endif
#ifdef IBMPC
static unsigned short sincof[] = {
0x0ec1,0x1fcf,0xd8fd,0x3de5,
0x1691,0xa929,0xe5e5,0xbe5a,
0x4896,0x567d,0x1de3,0x3ec7,
0xdf03,0x19bf,0x01a0,0xbf2a,
0xf7d0,0x1110,0x1111,0x3f81,
0x5548,0x5555,0x5555,0xbfc5
};
static unsigned short coscof[] = {
0xb219,0x1ad9,0xff83,0x3da8,
0x14d4,0xc1e5,0xeea7,0xbe21,
0xd9a5,0x8e06,0x7e4f,0x3e92,
0xbcd9,0x19dd,0x01a0,0xbefa,
0x5d47,0x16c1,0xc16c,0x3f56,
0x5551,0x5555,0x5555,0xbfa5,
0x0000,0x0000,0x0000,0x3fe0
};
static unsigned short P1[] = {0x9d39,0xa252,0xdf46,0x3f91};
#define PI180 *(double *)P1
static double lossth = 1.0e14;
#endif
#ifdef MIEEE
static unsigned short sincof[] = {
0x3de5,0xd8fd,0x1fcf,0x0ec1,
0xbe5a,0xe5e5,0xa929,0x1691,
0x3ec7,0x1de3,0x567d,0x4896,
0xbf2a,0x01a0,0x19bf,0xdf03,
0x3f81,0x1111,0x1110,0xf7d0,
0xbfc5,0x5555,0x5555,0x5548
};
static unsigned short coscof[] = {
0x3da8,0xff83,0x1ad9,0xb219,
0xbe21,0xeea7,0xc1e5,0x14d4,
0x3e92,0x7e4f,0x8e06,0xd9a5,
0xbefa,0x01a0,0x19dd,0xbcd9,
0x3f56,0xc16c,0x16c1,0x5d47,
0xbfa5,0x5555,0x5555,0x5551,
0x3fe0,0x0000,0x0000,0x0000
};
static unsigned short P1[] = {
0x3f91,0xdf46,0xa252,0x9d39
};
#define PI180 *(double *)P1
static double lossth = 1.0e14;
#endif
#ifdef ANSIPROT
extern double polevl ( double, void *, int );
extern double floor ( double );
extern double ldexp ( double, int );
#else
double polevl(), floor(), ldexp();
#endif
extern double PIO4;
double sindg(x)
double x;
{
double y, z, zz;
int j, sign;
/* make argument positive but save the sign */
sign = 1;
if( x < 0 )
{
x = -x;
sign = -1;
}
if( x > lossth )
{
mtherr( "sindg", TLOSS );
return(0.0);
}
y = floor( x/45.0 ); /* integer part of x/PIO4 */
/* strip high bits of integer part to prevent integer overflow */
z = ldexp( y, -4 );
z = floor(z); /* integer part of y/8 */
z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
j = z; /* convert to integer for tests on the phase angle */
/* map zeros to origin */
if( j & 1 )
{
j += 1;
y += 1.0;
}
j = j & 07; /* octant modulo 360 degrees */
/* reflect in x axis */
if( j > 3)
{
sign = -sign;
j -= 4;
}
z = x - y * 45.0; /* x mod 45 degrees */
z *= PI180; /* multiply by pi/180 to convert to radians */
zz = z * z;
if( (j==1) || (j==2) )
{
y = 1.0 - zz * polevl( zz, coscof, 6 );
}
else
{
y = z + z * (zz * polevl( zz, sincof, 5 ));
}
if(sign < 0)
y = -y;
return(y);
}
double cosdg(x)
double x;
{
double y, z, zz;
int j, sign;
/* make argument positive */
sign = 1;
if( x < 0 )
x = -x;
if( x > lossth )
{
mtherr( "cosdg", TLOSS );
return(0.0);
}
y = floor( x/45.0 );
z = ldexp( y, -4 );
z = floor(z); /* integer part of y/8 */
z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
/* integer and fractional part modulo one octant */
j = z;
if( j & 1 ) /* map zeros to origin */
{
j += 1;
y += 1.0;
}
j = j & 07;
if( j > 3)
{
j -=4;
sign = -sign;
}
if( j > 1 )
sign = -sign;
z = x - y * 45.0; /* x mod 45 degrees */
z *= PI180; /* multiply by pi/180 to convert to radians */
zz = z * z;
if( (j==1) || (j==2) )
{
y = z + z * (zz * polevl( zz, sincof, 5 ));
}
else
{
y = 1.0 - zz * polevl( zz, coscof, 6 );
}
if(sign < 0)
y = -y;
return(y);
}
|