1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
/* monot.c
Floating point function test vectors.
Arguments and function values are synthesized for NPTS points in
the vicinity of each given tabulated test point. The points are
chosen to be near and on either side of the likely function algorithm
domain boundaries. Since the function programs change their methods
at these points, major coding errors or monotonicity failures might be
detected.
August, 1998
S. L. Moshier */
#include <stdio.h>
/* Avoid including math.h. */
double frexp (double, int *);
double ldexp (double, int);
/* Number of test points to generate on each side of tabulated point. */
#define NPTS 100
/* Functions of one variable. */
double exp (double);
double log (double);
double sin (double);
double cos (double);
double tan (double);
double atan (double);
double asin (double);
double acos (double);
double sinh (double);
double cosh (double);
double tanh (double);
double asinh (double);
double acosh (double);
double atanh (double);
double gamma (double);
double fabs (double);
double floor (double);
struct oneargument
{
char *name; /* Name of the function. */
double (*func) (double);
double arg1; /* Function argument, assumed exact. */
double answer1; /* Exact, close to function value. */
double answer2; /* answer1 + answer2 has extended precision. */
double derivative; /* dy/dx evaluated at x = arg1. */
int thresh; /* Error report threshold. 2 = 1 ULP approx. */
};
/* Add this to error threshold test[i].thresh. */
#define OKERROR 0
/* Unit of relative error in test[i].thresh. */
static double MACHEP = 1.1102230246251565404e-16;
/* extern double MACHEP; */
struct oneargument test1[] =
{
{"exp", exp, 1.0, 2.7182769775390625,
4.85091998273536028747e-6, 2.71828182845904523536, 2},
{"exp", exp, -1.0, 3.678741455078125e-1,
5.29566362982159552377e-6, 3.678794411714423215955e-1, 2},
{"exp", exp, 0.5, 1.648712158203125,
9.1124970031468486507878e-6, 1.64872127070012814684865, 2},
{"exp", exp, -0.5, 6.065216064453125e-1,
9.0532673209236037995e-6, 6.0653065971263342360e-1, 2},
{"exp", exp, 2.0, 7.3890533447265625,
2.75420408772723042746e-6, 7.38905609893065022723, 2},
{"exp", exp, -2.0, 1.353302001953125e-1,
5.08304130019189399949e-6, 1.3533528323661269189e-1, 2},
{"log", log, 1.41421356237309492343, 3.465728759765625e-1,
7.1430341006605745676897e-7, 7.0710678118654758708668e-1, 2},
{"log", log, 7.07106781186547461715e-1, -3.46588134765625e-1,
1.45444856522566402246e-5, 1.41421356237309517417, 2},
{"sin", sin, 7.85398163397448278999e-1, 7.0709228515625e-1,
1.4496030297502751942956e-5, 7.071067811865475460497e-1, 2},
{"sin", sin, -7.85398163397448501044e-1, -7.071075439453125e-1,
7.62758764840238811175e-7, 7.07106781186547389040e-1, 2},
{"sin", sin, 1.570796326794896558, 9.999847412109375e-1,
1.52587890625e-5, 6.12323399573676588613e-17, 2},
{"sin", sin, -1.57079632679489678004, -1.0,
1.29302922820150306903e-32, -1.60812264967663649223e-16, 2},
{"sin", sin, 4.712388980384689674, -1.0,
1.68722975549458979398e-32, -1.83697019872102976584e-16, 2},
{"sin", sin, -4.71238898038468989604, 9.999847412109375e-1,
1.52587890625e-5, 3.83475850529283315008e-17, 2},
{"cos", cos, 3.92699081698724139500E-1, 9.23873901367187500000E-1,
5.63114409926198633370E-6, -3.82683432365089757586E-1, 2},
{"cos", cos, 7.85398163397448278999E-1, 7.07092285156250000000E-1,
1.44960302975460497458E-5, -7.07106781186547502752E-1, 2},
{"cos", cos, 1.17809724509617241850E0, 3.82675170898437500000E-1,
8.26146665231415693919E-6, -9.23879532511286738554E-1, 2},
{"cos", cos, 1.96349540849362069750E0, -3.82690429687500000000E-1,
6.99732241029898567203E-6, -9.23879532511286785419E-1, 2},
{"cos", cos, 2.35619449019234483700E0, -7.07107543945312500000E-1,
7.62758765040545859856E-7, -7.07106781186547589348E-1, 2},
{"cos", cos, 2.74889357189106897650E0, -9.23889160156250000000E-1,
9.62764496328487887036E-6, -3.82683432365089870728E-1, 2},
{"cos", cos, 3.14159265358979311600E0, -1.00000000000000000000E0,
7.49879891330928797323E-33, -1.22464679914735317723E-16, 2},
{"tan", tan, 7.85398163397448278999E-1, 9.999847412109375e-1,
1.52587890624387676600E-5, 1.99999999999999987754E0, 2},
{"tan", tan, 1.17809724509617241850E0, 2.41419982910156250000E0,
1.37332715322352112604E-5, 6.82842712474618858345E0, 2},
{"tan", tan, 1.96349540849362069750E0, -2.41421508789062500000E0,
1.52551752942854759743E-6, 6.82842712474619262118E0, 2},
{"tan", tan, 2.35619449019234483700E0, -1.00001525878906250000E0,
1.52587890623163029801E-5, 2.00000000000000036739E0, 2},
{"tan", tan, 2.74889357189106897650E0, -4.14215087890625000000E-1,
1.52551752982565655126E-6, 1.17157287525381000640E0, 2},
{"atan", atan, 4.14213562373094923430E-1, 3.92684936523437500000E-1,
1.41451752865477964149E-5, 8.53553390593273837869E-1, 2},
{"atan", atan, 1.0, 7.85385131835937500000E-1,
1.30315615108096156608E-5, 0.5, 2},
{"atan", atan, 2.41421356237309492343E0, 1.17808532714843750000E0,
1.19179477349460632350E-5, 1.46446609406726250782E-1, 2},
{"atan", atan, -2.41421356237309514547E0, -1.17810058593750000000E0,
3.34084132752141908545E-6, 1.46446609406726227789E-1, 2},
{"atan", atan, -1.0, -7.85400390625000000000E-1,
2.22722755169038433915E-6, 0.5, 2},
{"atan", atan, -4.14213562373095145475E-1, -3.92700195312500000000E-1,
1.11361377576267665972E-6, 8.53553390593273703853E-1, 2},
{"asin", asin, 3.82683432365089615246E-1, 3.92684936523437500000E-1,
1.41451752864854321970E-5, 1.08239220029239389286E0, 2},
{"asin", asin, 0.5, 5.23590087890625000000E-1,
8.68770767387307710723E-6, 1.15470053837925152902E0, 2},
{"asin", asin, 7.07106781186547461715E-1, 7.85385131835937500000E-1,
1.30315615107209645016E-5, 1.41421356237309492343E0, 2},
{"asin", asin, 9.23879532511286738483E-1, 1.17808532714843750000E0,
1.19179477349183147612E-5, 2.61312592975275276483E0, 2},
{"asin", asin, -0.5, -5.23605346679687500000E-1,
6.57108138862692289277E-6, 1.15470053837925152902E0, 2},
{"acos", acos, 1.95090322016128192573E-1, 1.37443542480468750000E0,
1.13611408471185777914E-5, -1.01959115820831832232E0, 2},
{"acos", acos, 3.82683432365089615246E-1, 1.17808532714843750000E0,
1.19179477351337991247E-5, -1.08239220029239389286E0, 2},
{"acos", acos, 0.5, 1.04719543457031250000E0,
2.11662628524615421446E-6, -1.15470053837925152902E0, 2},
{"acos", acos, 7.07106781186547461715E-1, 7.85385131835937500000E-1,
1.30315615108982668201E-5, -1.41421356237309492343E0, 2},
{"acos", acos, 9.23879532511286738483E-1, 3.92684936523437500000E-1,
1.41451752867009165605E-5, -2.61312592975275276483E0, 2},
{"acos", acos, 9.80785280403230430579E-1, 1.96334838867187500000E-1,
1.47019821746724723933E-5, -5.12583089548300990774E0, 2},
{"acos", acos, -0.5, 2.09439086914062500000E0,
4.23325257049230842892E-6, -1.15470053837925152902E0, 2},
{"sinh", sinh, 1.0, 1.17518615722656250000E0,
1.50364172389568823819E-5, 1.54308063481524377848E0, 2},
{"sinh", sinh, 7.09089565712818057364E2, 4.49423283712885057274E307,
4.25947714184369757620E208, 4.49423283712885057274E307, 2},
{"sinh", sinh, 2.22044604925031308085E-16, 0.00000000000000000000E0,
2.22044604925031308085E-16, 1.00000000000000000000E0, 2},
{"cosh", cosh, 7.09089565712818057364E2, 4.49423283712885057274E307,
4.25947714184369757620E208, 4.49423283712885057274E307, 2},
{"cosh", cosh, 1.0, 1.54307556152343750000E0,
5.07329180627847790562E-6, 1.17520119364380145688E0, 2},
{"cosh", cosh, 0.5, 1.12762451171875000000E0,
1.45348763078522622516E-6, 5.21095305493747361622E-1, 2},
{"tanh", tanh, 0.5, 4.62112426757812500000E-1,
4.73050219725850231848E-6, 7.86447732965927410150E-1, 2},
{"tanh", tanh, 5.49306144334054780032E-1, 4.99984741210937500000E-1,
1.52587890624507506378E-5, 7.50000000000000049249E-1, 2},
{"tanh", tanh, 0.625, 5.54595947265625000000E-1,
3.77508375729399903910E-6, 6.92419147969988069631E-1, 2},
{"asinh", asinh, 0.5, 4.81201171875000000000E-1,
1.06531846034474977589E-5, 8.94427190999915878564E-1, 2},
{"asinh", asinh, 1.0, 8.81362915039062500000E-1,
1.06719804805252326093E-5, 7.07106781186547524401E-1, 2},
{"asinh", asinh, 2.0, 1.44363403320312500000E0,
1.44197568534249327674E-6, 4.47213595499957939282E-1, 2},
{"acosh", acosh, 2.0, 1.31695556640625000000E0,
2.33051856670862504635E-6, 5.77350269189625764509E-1, 2},
{"acosh", acosh, 1.5, 9.62417602539062500000E-1,
6.04758014439499551783E-6, 8.94427190999915878564E-1, 2},
{"acosh", acosh, 1.03125, 2.49343872070312500000E-1,
9.62177257298785143908E-6, 3.96911150685467059809E0, 2},
{"atanh", atanh, 0.5, 5.49301147460937500000E-1,
4.99687311734569762262E-6, 1.33333333333333333333E0, 2},
#if 0
{"gamma", gamma, 1.0, 1.0,
0.0, -5.772156649015328606e-1, 2},
{"gamma", gamma, 2.0, 1.0,
0.0, 4.2278433509846713939e-1, 2},
{"gamma", gamma, 3.0, 2.0,
0.0, 1.845568670196934279, 2},
{"gamma", gamma, 4.0, 6.0,
0.0, 7.536706010590802836, 2},
#endif
{"null", NULL, 0.0, 0.0, 0.0, 2},
};
/* These take care of extra-precise floating point register problems. */
volatile double volat1;
volatile double volat2;
/* Return the next nearest floating point value to X
in the direction of UPDOWN (+1 or -1).
(Fails if X is denormalized.) */
double
nextval (x, updown)
double x;
int updown;
{
double m;
int i;
volat1 = x;
m = 0.25 * MACHEP * volat1 * updown;
volat2 = volat1 + m;
if (volat2 != volat1)
printf ("successor failed\n");
for (i = 2; i < 10; i++)
{
volat2 = volat1 + i * m;
if (volat1 != volat2)
return volat2;
}
printf ("nextval failed\n");
return volat1;
}
int
main ()
{
double (*fun1) (double);
int i, j, errs, tests;
double x, x0, y, dy, err;
/* Set math coprocessor to double precision. */
/* dprec (); */
errs = 0;
tests = 0;
i = 0;
for (;;)
{
fun1 = test1[i].func;
if (fun1 == NULL)
break;
volat1 = test1[i].arg1;
x0 = volat1;
x = volat1;
for (j = 0; j <= NPTS; j++)
{
volat1 = x - x0;
dy = volat1 * test1[i].derivative;
dy = test1[i].answer2 + dy;
volat1 = test1[i].answer1 + dy;
volat2 = (*(fun1)) (x);
if (volat2 != volat1)
{
/* Report difference between program result
and extended precision function value. */
err = volat2 - test1[i].answer1;
err = err - dy;
err = err / volat1;
if (fabs (err) > ((OKERROR + test1[i].thresh) * MACHEP))
{
printf ("%d %s(%.16e) = %.16e, rel err = %.3e\n",
j, test1[i].name, x, volat2, err);
errs += 1;
}
}
x = nextval (x, 1);
tests += 1;
}
x = x0;
x = nextval (x, -1);
for (j = 1; j < NPTS; j++)
{
volat1 = x - x0;
dy = volat1 * test1[i].derivative;
dy = test1[i].answer2 + dy;
volat1 = test1[i].answer1 + dy;
volat2 = (*(fun1)) (x);
if (volat2 != volat1)
{
err = volat2 - test1[i].answer1;
err = err - dy;
err = err / volat1;
if (fabs (err) > ((OKERROR + test1[i].thresh) * MACHEP))
{
printf ("%d %s(%.16e) = %.16e, rel err = %.3e\n",
j, test1[i].name, x, volat2, err);
errs += 1;
}
}
x = nextval (x, -1);
tests += 1;
}
i += 1;
}
printf ("%d errors in %d tests\n", errs, tests);
}
|