1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/* igam.c
*
* Incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* double a, x, y, igam();
*
* y = igam( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
* x
* -
* 1 | | -t a-1
* igam(a,x) = ----- | e t dt.
* - | |
* | (a) -
* 0
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 200000 3.6e-14 2.9e-15
* IEEE 0,100 300000 9.9e-14 1.5e-14
*/
/* igamc()
*
* Complemented incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* double a, x, y, igamc();
*
* y = igamc( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
*
* igamc(a,x) = 1 - igam(a,x)
*
* inf.
* -
* 1 | | -t a-1
* = ----- | e t dt.
* - | |
* | (a) -
* x
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY:
*
* Tested at random a, x.
* a x Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
* IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
*/
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1985, 1987, 2000 by Stephen L. Moshier
*/
#include <math.h>
#ifdef ANSIPROT
extern double lgam ( double );
extern double exp ( double );
extern double log ( double );
extern double fabs ( double );
extern double igam ( double, double );
extern double igamc ( double, double );
#else
double lgam(), exp(), log(), fabs(), igam(), igamc();
#endif
extern double MACHEP, MAXLOG;
static double big = 4.503599627370496e15;
static double biginv = 2.22044604925031308085e-16;
double igamc( a, x )
double a, x;
{
double ans, ax, c, yc, r, t, y, z;
double pk, pkm1, pkm2, qk, qkm1, qkm2;
if( (x <= 0) || ( a <= 0) )
return( 1.0 );
if( (x < 1.0) || (x < a) )
return( 1.0 - igam(a,x) );
ax = a * log(x) - x - lgam(a);
if( ax < -MAXLOG )
{
mtherr( "igamc", UNDERFLOW );
return( 0.0 );
}
ax = exp(ax);
/* continued fraction */
y = 1.0 - a;
z = x + y + 1.0;
c = 0.0;
pkm2 = 1.0;
qkm2 = x;
pkm1 = x + 1.0;
qkm1 = z * x;
ans = pkm1/qkm1;
do
{
c += 1.0;
y += 1.0;
z += 2.0;
yc = y * c;
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if( qk != 0 )
{
r = pk/qk;
t = fabs( (ans - r)/r );
ans = r;
}
else
t = 1.0;
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if( fabs(pk) > big )
{
pkm2 *= biginv;
pkm1 *= biginv;
qkm2 *= biginv;
qkm1 *= biginv;
}
}
while( t > MACHEP );
return( ans * ax );
}
/* left tail of incomplete gamma function:
*
* inf. k
* a -x - x
* x e > ----------
* - -
* k=0 | (a+k+1)
*
*/
double igam( a, x )
double a, x;
{
double ans, ax, c, r;
if( (x <= 0) || ( a <= 0) )
return( 0.0 );
if( (x > 1.0) && (x > a ) )
return( 1.0 - igamc(a,x) );
/* Compute x**a * exp(-x) / gamma(a) */
ax = a * log(x) - x - lgam(a);
if( ax < -MAXLOG )
{
mtherr( "igam", UNDERFLOW );
return( 0.0 );
}
ax = exp(ax);
/* power series */
r = a;
c = 1.0;
ans = 1.0;
do
{
r += 1.0;
c *= x/r;
ans += c;
}
while( c/ans > MACHEP );
return( ans * ax/a );
}
|