1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/* beta.c
*
* Beta function
*
*
*
* SYNOPSIS:
*
* double a, b, y, beta();
*
* y = beta( a, b );
*
*
*
* DESCRIPTION:
*
* - -
* | (a) | (b)
* beta( a, b ) = -----------.
* -
* | (a+b)
*
* For large arguments the logarithm of the function is
* evaluated using lgam(), then exponentiated.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,30 1700 7.7e-15 1.5e-15
* IEEE 0,30 30000 8.1e-14 1.1e-14
*
* ERROR MESSAGES:
*
* message condition value returned
* beta overflow log(beta) > MAXLOG 0.0
* a or b <0 integer 0.0
*
*/
/* beta.c */
/*
Cephes Math Library Release 2.0: April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
#ifdef UNK
#define MAXGAM 34.84425627277176174
#endif
#ifdef DEC
#define MAXGAM 34.84425627277176174
#endif
#ifdef IBMPC
#define MAXGAM 171.624376956302725
#endif
#ifdef MIEEE
#define MAXGAM 171.624376956302725
#endif
#ifdef ANSIPROT
extern double fabs ( double );
extern double gamma ( double );
extern double lgam ( double );
extern double exp ( double );
extern double log ( double );
extern double floor ( double );
#else
double fabs(), gamma(), lgam(), exp(), log(), floor();
#endif
extern double MAXLOG, MAXNUM;
extern int sgngam;
double beta( a, b )
double a, b;
{
double y;
int sign;
sign = 1;
if( a <= 0.0 )
{
if( a == floor(a) )
goto over;
}
if( b <= 0.0 )
{
if( b == floor(b) )
goto over;
}
y = a + b;
if( fabs(y) > MAXGAM )
{
y = lgam(y);
sign *= sgngam; /* keep track of the sign */
y = lgam(b) - y;
sign *= sgngam;
y = lgam(a) + y;
sign *= sgngam;
if( y > MAXLOG )
{
over:
mtherr( "beta", OVERFLOW );
return( sign * MAXNUM );
}
return( sign * exp(y) );
}
y = gamma(y);
if( y == 0.0 )
goto over;
if( a > b )
{
y = gamma(a)/y;
y *= gamma(b);
}
else
{
y = gamma(b)/y;
y *= gamma(a);
}
return(y);
}
/* Natural log of |beta|. Return the sign of beta in sgngam. */
double lbeta( a, b )
double a, b;
{
double y;
int sign;
sign = 1;
if( a <= 0.0 )
{
if( a == floor(a) )
goto over;
}
if( b <= 0.0 )
{
if( b == floor(b) )
goto over;
}
y = a + b;
if( fabs(y) > MAXGAM )
{
y = lgam(y);
sign *= sgngam; /* keep track of the sign */
y = lgam(b) - y;
sign *= sgngam;
y = lgam(a) + y;
sign *= sgngam;
sgngam = sign;
return( y );
}
y = gamma(y);
if( y == 0.0 )
{
over:
mtherr( "lbeta", OVERFLOW );
return( sign * MAXNUM );
}
if( a > b )
{
y = gamma(a)/y;
y *= gamma(b);
}
else
{
y = gamma(b)/y;
y *= gamma(a);
}
if( y < 0 )
{
sgngam = -1;
y = -y;
}
else
sgngam = 1;
return( log(y) );
}
|