summaryrefslogtreecommitdiff
path: root/libc/stdlib/malloc-standard/malloc.c
blob: 1a6d4dc1c0b0fd088d9cd2ae24d16464e1a63e4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
/*
  This is a version (aka dlmalloc) of malloc/free/realloc written by
  Doug Lea and released to the public domain.  Use, modify, and
  redistribute this code without permission or acknowledgement in any
  way you wish.  Send questions, comments, complaints, performance
  data, etc to dl@cs.oswego.edu

  VERSION 2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)

  Note: There may be an updated version of this malloc obtainable at
           ftp://gee.cs.oswego.edu/pub/misc/malloc.c
  Check before installing!

  Hacked up for uClibc by Erik Andersen <andersen@codepoet.org>
*/

#include "malloc.h"


__UCLIBC_MUTEX_INIT(__malloc_lock, PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP);

/*
   There is exactly one instance of this struct in this malloc.
   If you are adapting this malloc in a way that does NOT use a static
   malloc_state, you MUST explicitly zero-fill it before using. This
   malloc relies on the property that malloc_state is initialized to
   all zeroes (as is true of C statics).
*/
struct malloc_state __malloc_state;  /* never directly referenced */

/* forward declaration */
static int __malloc_largebin_index(unsigned int sz);

#ifdef __UCLIBC_MALLOC_DEBUGGING__

/*
  Debugging support

  Because freed chunks may be overwritten with bookkeeping fields, this
  malloc will often die when freed memory is overwritten by user
  programs.  This can be very effective (albeit in an annoying way)
  in helping track down dangling pointers.

  If you compile with __UCLIBC_MALLOC_DEBUGGING__, a number of assertion checks are
  enabled that will catch more memory errors. You probably won't be
  able to make much sense of the actual assertion errors, but they
  should help you locate incorrectly overwritten memory.  The
  checking is fairly extensive, and will slow down execution
  noticeably. Calling malloc_stats or mallinfo with __UCLIBC_MALLOC_DEBUGGING__ set will
  attempt to check every non-mmapped allocated and free chunk in the
  course of computing the summmaries. (By nature, mmapped regions
  cannot be checked very much automatically.)

  Setting __UCLIBC_MALLOC_DEBUGGING__ may also be helpful if you are trying to modify
  this code. The assertions in the check routines spell out in more
  detail the assumptions and invariants underlying the algorithms.

  Setting __UCLIBC_MALLOC_DEBUGGING__ does NOT provide an automated mechanism for checking
  that all accesses to malloced memory stay within their
  bounds. However, there are several add-ons and adaptations of this
  or other mallocs available that do this.
*/

/* Properties of all chunks */
void __do_check_chunk(mchunkptr p)
{
    mstate av = get_malloc_state();
#ifdef __DOASSERTS__
    /* min and max possible addresses assuming contiguous allocation */
    char* max_address = (char*)(av->top) + chunksize(av->top);
    char* min_address = max_address - av->sbrked_mem;
    unsigned long  sz = chunksize(p);
#endif

    if (!chunk_is_mmapped(p)) {

	/* Has legal address ... */
	if (p != av->top) {
	    if (contiguous(av)) {
		assert(((char*)p) >= min_address);
		assert(((char*)p + sz) <= ((char*)(av->top)));
	    }
	}
	else {
	    /* top size is always at least MINSIZE */
	    assert((unsigned long)(sz) >= MINSIZE);
	    /* top predecessor always marked inuse */
	    assert(prev_inuse(p));
	}

    }
    else {
	/* address is outside main heap  */
	if (contiguous(av) && av->top != initial_top(av)) {
	    assert(((char*)p) < min_address || ((char*)p) > max_address);
	}
	/* chunk is page-aligned */
	assert(((p->prev_size + sz) & (av->pagesize-1)) == 0);
	/* mem is aligned */
	assert(aligned_OK(chunk2mem(p)));
    }
}

/* Properties of free chunks */
void __do_check_free_chunk(mchunkptr p)
{
    size_t sz = p->size & ~PREV_INUSE;
#ifdef __DOASSERTS__
    mstate av = get_malloc_state();
    mchunkptr next = chunk_at_offset(p, sz);
#endif

    __do_check_chunk(p);

    /* Chunk must claim to be free ... */
    assert(!inuse(p));
    assert (!chunk_is_mmapped(p));

    /* Unless a special marker, must have OK fields */
    if ((unsigned long)(sz) >= MINSIZE)
    {
	assert((sz & MALLOC_ALIGN_MASK) == 0);
	assert(aligned_OK(chunk2mem(p)));
	/* ... matching footer field */
	assert(next->prev_size == sz);
	/* ... and is fully consolidated */
	assert(prev_inuse(p));
	assert (next == av->top || inuse(next));

	/* ... and has minimally sane links */
	assert(p->fd->bk == p);
	assert(p->bk->fd == p);
    }
    else /* markers are always of size (sizeof(size_t)) */
	assert(sz == (sizeof(size_t)));
}

/* Properties of inuse chunks */
void __do_check_inuse_chunk(mchunkptr p)
{
    mstate av = get_malloc_state();
    mchunkptr next;
    __do_check_chunk(p);

    if (chunk_is_mmapped(p))
	return; /* mmapped chunks have no next/prev */

    /* Check whether it claims to be in use ... */
    assert(inuse(p));

    next = next_chunk(p);

    /* ... and is surrounded by OK chunks.
       Since more things can be checked with free chunks than inuse ones,
       if an inuse chunk borders them and debug is on, it's worth doing them.
       */
    if (!prev_inuse(p))  {
	/* Note that we cannot even look at prev unless it is not inuse */
	mchunkptr prv = prev_chunk(p);
	assert(next_chunk(prv) == p);
	__do_check_free_chunk(prv);
    }

    if (next == av->top) {
	assert(prev_inuse(next));
	assert(chunksize(next) >= MINSIZE);
    }
    else if (!inuse(next))
	__do_check_free_chunk(next);
}

/* Properties of chunks recycled from fastbins */
void __do_check_remalloced_chunk(mchunkptr p, size_t s)
{
#ifdef __DOASSERTS__
    size_t sz = p->size & ~PREV_INUSE;
#endif

    __do_check_inuse_chunk(p);

    /* Legal size ... */
    assert((sz & MALLOC_ALIGN_MASK) == 0);
    assert((unsigned long)(sz) >= MINSIZE);
    /* ... and alignment */
    assert(aligned_OK(chunk2mem(p)));
    /* chunk is less than MINSIZE more than request */
    assert((long)(sz) - (long)(s) >= 0);
    assert((long)(sz) - (long)(s + MINSIZE) < 0);
}

/* Properties of nonrecycled chunks at the point they are malloced */
void __do_check_malloced_chunk(mchunkptr p, size_t s)
{
    /* same as recycled case ... */
    __do_check_remalloced_chunk(p, s);

    /*
       ... plus,  must obey implementation invariant that prev_inuse is
       always true of any allocated chunk; i.e., that each allocated
       chunk borders either a previously allocated and still in-use
       chunk, or the base of its memory arena. This is ensured
       by making all allocations from the the `lowest' part of any found
       chunk.  This does not necessarily hold however for chunks
       recycled via fastbins.
       */

    assert(prev_inuse(p));
}


/*
  Properties of malloc_state.

  This may be useful for debugging malloc, as well as detecting user
  programmer errors that somehow write into malloc_state.

  If you are extending or experimenting with this malloc, you can
  probably figure out how to hack this routine to print out or
  display chunk addresses, sizes, bins, and other instrumentation.
*/
void __do_check_malloc_state(void)
{
    mstate av = get_malloc_state();
    int i;
    mchunkptr p;
    mchunkptr q;
    mbinptr b;
    unsigned int binbit;
    int empty;
    unsigned int idx;
    size_t size;
    unsigned long  total = 0;
    int max_fast_bin;

    /* internal size_t must be no wider than pointer type */
    assert(sizeof(size_t) <= sizeof(char*));

    /* alignment is a power of 2 */
    assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);

    /* cannot run remaining checks until fully initialized */
    if (av->top == 0 || av->top == initial_top(av))
	return;

    /* pagesize is a power of 2 */
    assert((av->pagesize & (av->pagesize-1)) == 0);

    /* properties of fastbins */

    /* max_fast is in allowed range */
    assert(get_max_fast(av) <= request2size(MAX_FAST_SIZE));

    max_fast_bin = fastbin_index(av->max_fast);

    for (i = 0; i < NFASTBINS; ++i) {
	p = av->fastbins[i];

	/* all bins past max_fast are empty */
	if (i > max_fast_bin)
	    assert(p == 0);

	while (p != 0) {
	    /* each chunk claims to be inuse */
	    __do_check_inuse_chunk(p);
	    total += chunksize(p);
	    /* chunk belongs in this bin */
	    assert(fastbin_index(chunksize(p)) == i);
	    p = p->fd;
	}
    }

    if (total != 0)
	assert(have_fastchunks(av));
    else if (!have_fastchunks(av))
	assert(total == 0);

    /* check normal bins */
    for (i = 1; i < NBINS; ++i) {
	b = bin_at(av,i);

	/* binmap is accurate (except for bin 1 == unsorted_chunks) */
	if (i >= 2) {
	    binbit = get_binmap(av,i);
	    empty = last(b) == b;
	    if (!binbit)
		assert(empty);
	    else if (!empty)
		assert(binbit);
	}

	for (p = last(b); p != b; p = p->bk) {
	    /* each chunk claims to be free */
	    __do_check_free_chunk(p);
	    size = chunksize(p);
	    total += size;
	    if (i >= 2) {
		/* chunk belongs in bin */
		idx = bin_index(size);
		assert(idx == i);
		/* lists are sorted */
		if ((unsigned long) size >= (unsigned long)(FIRST_SORTED_BIN_SIZE)) {
		    assert(p->bk == b ||
			    (unsigned long)chunksize(p->bk) >=
			    (unsigned long)chunksize(p));
		}
	    }
	    /* chunk is followed by a legal chain of inuse chunks */
	    for (q = next_chunk(p);
		    (q != av->top && inuse(q) &&
		     (unsigned long)(chunksize(q)) >= MINSIZE);
		    q = next_chunk(q))
		__do_check_inuse_chunk(q);
	}
    }

    /* top chunk is OK */
    __do_check_chunk(av->top);

    /* sanity checks for statistics */

    assert(total <= (unsigned long)(av->max_total_mem));
    assert(av->n_mmaps >= 0);
    assert(av->n_mmaps <= av->max_n_mmaps);

    assert((unsigned long)(av->sbrked_mem) <=
	    (unsigned long)(av->max_sbrked_mem));

    assert((unsigned long)(av->mmapped_mem) <=
	    (unsigned long)(av->max_mmapped_mem));

    assert((unsigned long)(av->max_total_mem) >=
	    (unsigned long)(av->mmapped_mem) + (unsigned long)(av->sbrked_mem));
}
#endif


/* ----------- Routines dealing with system allocation -------------- */

/*
  sysmalloc handles malloc cases requiring more memory from the system.
  On entry, it is assumed that av->top does not have enough
  space to service request for nb bytes, thus requiring that av->top
  be extended or replaced.
*/
static void* __malloc_alloc(size_t nb, mstate av)
{
    mchunkptr       old_top;        /* incoming value of av->top */
    size_t old_size;       /* its size */
    char*           old_end;        /* its end address */

    long            size;           /* arg to first MORECORE or mmap call */
    char*           fst_brk;        /* return value from MORECORE */

    long            correction;     /* arg to 2nd MORECORE call */
    char*           snd_brk;        /* 2nd return val */

    size_t front_misalign; /* unusable bytes at front of new space */
    size_t end_misalign;   /* partial page left at end of new space */
    char*           aligned_brk;    /* aligned offset into brk */

    mchunkptr       p;              /* the allocated/returned chunk */
    mchunkptr       remainder;      /* remainder from allocation */
    unsigned long    remainder_size; /* its size */

    unsigned long    sum;            /* for updating stats */

    size_t          pagemask  = av->pagesize - 1;

    /*
       If there is space available in fastbins, consolidate and retry
       malloc from scratch rather than getting memory from system.  This
       can occur only if nb is in smallbin range so we didn't consolidate
       upon entry to malloc. It is much easier to handle this case here
       than in malloc proper.
       */

    if (have_fastchunks(av)) {
	assert(in_smallbin_range(nb));
	__malloc_consolidate(av);
	return malloc(nb - MALLOC_ALIGN_MASK);
    }


    /*
       If have mmap, and the request size meets the mmap threshold, and
       the system supports mmap, and there are few enough currently
       allocated mmapped regions, try to directly map this request
       rather than expanding top.
       */

    if ((unsigned long)(nb) >= (unsigned long)(av->mmap_threshold) &&
	    (av->n_mmaps < av->n_mmaps_max)) {

	char* mm;             /* return value from mmap call*/

	/*
	   Round up size to nearest page.  For mmapped chunks, the overhead
	   is one (sizeof(size_t)) unit larger than for normal chunks, because there
	   is no following chunk whose prev_size field could be used.
	   */
	size = (nb + (sizeof(size_t)) + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;

	/* Don't try if size wraps around 0 */
	if ((unsigned long)(size) > (unsigned long)(nb)) {

	    mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE));

	    if (mm != (char*)(MORECORE_FAILURE)) {

		/*
		   The offset to the start of the mmapped region is stored
		   in the prev_size field of the chunk. This allows us to adjust
		   returned start address to meet alignment requirements here
		   and in memalign(), and still be able to compute proper
		   address argument for later munmap in free() and realloc().
		   */

		front_misalign = (size_t)chunk2mem(mm) & MALLOC_ALIGN_MASK;
		if (front_misalign > 0) {
		    correction = MALLOC_ALIGNMENT - front_misalign;
		    p = (mchunkptr)(mm + correction);
		    p->prev_size = correction;
		    set_head(p, (size - correction) |IS_MMAPPED);
		}
		else {
		    p = (mchunkptr)mm;
		    p->prev_size = 0;
		    set_head(p, size|IS_MMAPPED);
		}

		/* update statistics */

		if (++av->n_mmaps > av->max_n_mmaps)
		    av->max_n_mmaps = av->n_mmaps;

		sum = av->mmapped_mem += size;
		if (sum > (unsigned long)(av->max_mmapped_mem))
		    av->max_mmapped_mem = sum;
		sum += av->sbrked_mem;
		if (sum > (unsigned long)(av->max_total_mem))
		    av->max_total_mem = sum;

		check_chunk(p);

		return chunk2mem(p);
	    }
	}
    }

    /* Record incoming configuration of top */

    old_top  = av->top;
    old_size = chunksize(old_top);
    old_end  = (char*)(chunk_at_offset(old_top, old_size));

    fst_brk = snd_brk = (char*)(MORECORE_FAILURE);

    /* If not the first time through, we require old_size to
     * be at least MINSIZE and to have prev_inuse set.  */

    assert((old_top == initial_top(av) && old_size == 0) ||
	    ((unsigned long) (old_size) >= MINSIZE &&
	     prev_inuse(old_top)));

    /* Precondition: not enough current space to satisfy nb request */
    assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));

    /* Precondition: all fastbins are consolidated */
    assert(!have_fastchunks(av));


    /* Request enough space for nb + pad + overhead */

    size = nb + av->top_pad + MINSIZE;

    /*
       If contiguous, we can subtract out existing space that we hope to
       combine with new space. We add it back later only if
       we don't actually get contiguous space.
       */

    if (contiguous(av))
	size -= old_size;

    /*
       Round to a multiple of page size.
       If MORECORE is not contiguous, this ensures that we only call it
       with whole-page arguments.  And if MORECORE is contiguous and
       this is not first time through, this preserves page-alignment of
       previous calls. Otherwise, we correct to page-align below.
       */

    size = (size + pagemask) & ~pagemask;

    /*
       Don't try to call MORECORE if argument is so big as to appear
       negative. Note that since mmap takes size_t arg, it may succeed
       below even if we cannot call MORECORE.
       */

    if (size > 0)
	fst_brk = (char*)(MORECORE(size));

    /*
       If have mmap, try using it as a backup when MORECORE fails or
       cannot be used. This is worth doing on systems that have "holes" in
       address space, so sbrk cannot extend to give contiguous space, but
       space is available elsewhere.  Note that we ignore mmap max count
       and threshold limits, since the space will not be used as a
       segregated mmap region.
       */

    if (fst_brk == (char*)(MORECORE_FAILURE)) {

	/* Cannot merge with old top, so add its size back in */
	if (contiguous(av))
	    size = (size + old_size + pagemask) & ~pagemask;

	/* If we are relying on mmap as backup, then use larger units */
	if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
	    size = MMAP_AS_MORECORE_SIZE;

	/* Don't try if size wraps around 0 */
	if ((unsigned long)(size) > (unsigned long)(nb)) {

	    fst_brk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE));

	    if (fst_brk != (char*)(MORECORE_FAILURE)) {

		/* We do not need, and cannot use, another sbrk call to find end */
		snd_brk = fst_brk + size;

		/* Record that we no longer have a contiguous sbrk region.
		   After the first time mmap is used as backup, we do not
		   ever rely on contiguous space since this could incorrectly
		   bridge regions.
		   */
		set_noncontiguous(av);
	    }
	}
    }

    if (fst_brk != (char*)(MORECORE_FAILURE)) {
	av->sbrked_mem += size;

	/*
	   If MORECORE extends previous space, we can likewise extend top size.
	   */

	if (fst_brk == old_end && snd_brk == (char*)(MORECORE_FAILURE)) {
	    set_head(old_top, (size + old_size) | PREV_INUSE);
	}

	/*
	   Otherwise, make adjustments:

	 * If the first time through or noncontiguous, we need to call sbrk
	 just to find out where the end of memory lies.

	 * We need to ensure that all returned chunks from malloc will meet
	 MALLOC_ALIGNMENT

	 * If there was an intervening foreign sbrk, we need to adjust sbrk
	 request size to account for fact that we will not be able to
	 combine new space with existing space in old_top.

	 * Almost all systems internally allocate whole pages at a time, in
	 which case we might as well use the whole last page of request.
	 So we allocate enough more memory to hit a page boundary now,
	 which in turn causes future contiguous calls to page-align.
	 */

	else {
	    front_misalign = 0;
	    end_misalign = 0;
	    correction = 0;
	    aligned_brk = fst_brk;

	    /*
	       If MORECORE returns an address lower than we have seen before,
	       we know it isn't really contiguous.  This and some subsequent
	       checks help cope with non-conforming MORECORE functions and
	       the presence of "foreign" calls to MORECORE from outside of
	       malloc or by other threads.  We cannot guarantee to detect
	       these in all cases, but cope with the ones we do detect.
	       */
	    if (contiguous(av) && old_size != 0 && fst_brk < old_end) {
		set_noncontiguous(av);
	    }

	    /* handle contiguous cases */
	    if (contiguous(av)) {

		/* We can tolerate forward non-contiguities here (usually due
		   to foreign calls) but treat them as part of our space for
		   stats reporting.  */
		if (old_size != 0)
		    av->sbrked_mem += fst_brk - old_end;

		/* Guarantee alignment of first new chunk made from this space */

		front_misalign = (size_t)chunk2mem(fst_brk) & MALLOC_ALIGN_MASK;
		if (front_misalign > 0) {

		    /*
		       Skip over some bytes to arrive at an aligned position.
		       We don't need to specially mark these wasted front bytes.
		       They will never be accessed anyway because
		       prev_inuse of av->top (and any chunk created from its start)
		       is always true after initialization.
		       */

		    correction = MALLOC_ALIGNMENT - front_misalign;
		    aligned_brk += correction;
		}

		/*
		   If this isn't adjacent to existing space, then we will not
		   be able to merge with old_top space, so must add to 2nd request.
		   */

		correction += old_size;

		/* Extend the end address to hit a page boundary */
		end_misalign = (size_t)(fst_brk + size + correction);
		correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;

		assert(correction >= 0);
		snd_brk = (char*)(MORECORE(correction));

		if (snd_brk == (char*)(MORECORE_FAILURE)) {
		    /*
		       If can't allocate correction, try to at least find out current
		       brk.  It might be enough to proceed without failing.
		       */
		    correction = 0;
		    snd_brk = (char*)(MORECORE(0));
		}
		else if (snd_brk < fst_brk) {
		    /*
		       If the second call gives noncontiguous space even though
		       it says it won't, the only course of action is to ignore
		       results of second call, and conservatively estimate where
		       the first call left us. Also set noncontiguous, so this
		       won't happen again, leaving at most one hole.

		       Note that this check is intrinsically incomplete.  Because
		       MORECORE is allowed to give more space than we ask for,
		       there is no reliable way to detect a noncontiguity
		       producing a forward gap for the second call.
		       */
		    snd_brk = fst_brk + size;
		    correction = 0;
		    set_noncontiguous(av);
		}

	    }

	    /* handle non-contiguous cases */
	    else {
		/* MORECORE/mmap must correctly align */
		assert(aligned_OK(chunk2mem(fst_brk)));

		/* Find out current end of memory */
		if (snd_brk == (char*)(MORECORE_FAILURE)) {
		    snd_brk = (char*)(MORECORE(0));
		    av->sbrked_mem += snd_brk - fst_brk - size;
		}
	    }

	    /* Adjust top based on results of second sbrk */
	    if (snd_brk != (char*)(MORECORE_FAILURE)) {
		av->top = (mchunkptr)aligned_brk;
		set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
		av->sbrked_mem += correction;

		/*
		   If not the first time through, we either have a
		   gap due to foreign sbrk or a non-contiguous region.  Insert a
		   double fencepost at old_top to prevent consolidation with space
		   we don't own. These fenceposts are artificial chunks that are
		   marked as inuse and are in any case too small to use.  We need
		   two to make sizes and alignments work out.
		   */

		if (old_size != 0) {
		    /* Shrink old_top to insert fenceposts, keeping size a
		       multiple of MALLOC_ALIGNMENT. We know there is at least
		       enough space in old_top to do this.
		       */
		    old_size = (old_size - 3*(sizeof(size_t))) & ~MALLOC_ALIGN_MASK;
		    set_head(old_top, old_size | PREV_INUSE);

		    /*
		       Note that the following assignments completely overwrite
		       old_top when old_size was previously MINSIZE.  This is
		       intentional. We need the fencepost, even if old_top otherwise gets
		       lost.
		       */
		    chunk_at_offset(old_top, old_size          )->size =
			(sizeof(size_t))|PREV_INUSE;

		    chunk_at_offset(old_top, old_size + (sizeof(size_t)))->size =
			(sizeof(size_t))|PREV_INUSE;

		    /* If possible, release the rest, suppressing trimming.  */
		    if (old_size >= MINSIZE) {
			size_t tt = av->trim_threshold;
			av->trim_threshold = (size_t)(-1);
			free(chunk2mem(old_top));
			av->trim_threshold = tt;
		    }
		}
	    }
	}

	/* Update statistics */
	sum = av->sbrked_mem;
	if (sum > (unsigned long)(av->max_sbrked_mem))
	    av->max_sbrked_mem = sum;

	sum += av->mmapped_mem;
	if (sum > (unsigned long)(av->max_total_mem))
	    av->max_total_mem = sum;

	check_malloc_state();

	/* finally, do the allocation */

	p = av->top;
	size = chunksize(p);

	/* check that one of the above allocation paths succeeded */
	if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
	    remainder_size = size - nb;
	    remainder = chunk_at_offset(p, nb);
	    av->top = remainder;
	    set_head(p, nb | PREV_INUSE);
	    set_head(remainder, remainder_size | PREV_INUSE);
	    check_malloced_chunk(p, nb);
	    return chunk2mem(p);
	}

    }

    /* catch all failure paths */
    __set_errno(ENOMEM);
    return 0;
}


/*
  Compute index for size. We expect this to be inlined when
  compiled with optimization, else not, which works out well.
*/
static int __malloc_largebin_index(unsigned int sz)
{
    unsigned int  x = sz >> SMALLBIN_WIDTH;
    unsigned int m;            /* bit position of highest set bit of m */

    if (x >= 0x10000) return NBINS-1;

    /* On intel, use BSRL instruction to find highest bit */
#if defined(__GNUC__) && defined(i386)

    __asm__("bsrl %1,%0\n\t"
	    : "=r" (m)
	    : "g"  (x));

#else
    {
	/*
	   Based on branch-free nlz algorithm in chapter 5 of Henry
	   S. Warren Jr's book "Hacker's Delight".
	   */

	unsigned int n = ((x - 0x100) >> 16) & 8;
	x <<= n;
	m = ((x - 0x1000) >> 16) & 4;
	n += m;
	x <<= m;
	m = ((x - 0x4000) >> 16) & 2;
	n += m;
	x = (x << m) >> 14;
	m = 13 - n + (x & ~(x>>1));
    }
#endif

    /* Use next 2 bits to create finer-granularity bins */
    return NSMALLBINS + (m << 2) + ((sz >> (m + 6)) & 3);
}



/* ----------------------------------------------------------------------
 *
 * PUBLIC STUFF
 *
 * ----------------------------------------------------------------------*/


/* ------------------------------ malloc ------------------------------ */
void* malloc(size_t bytes)
{
    mstate av;

    size_t nb;               /* normalized request size */
    unsigned int    idx;              /* associated bin index */
    mbinptr         bin;              /* associated bin */
    mfastbinptr*    fb;               /* associated fastbin */

    mchunkptr       victim;           /* inspected/selected chunk */
    size_t size;             /* its size */
    int             victim_index;     /* its bin index */

    mchunkptr       remainder;        /* remainder from a split */
    unsigned long    remainder_size;   /* its size */

    unsigned int    block;            /* bit map traverser */
    unsigned int    bit;              /* bit map traverser */
    unsigned int    map;              /* current word of binmap */

    mchunkptr       fwd;              /* misc temp for linking */
    mchunkptr       bck;              /* misc temp for linking */
    void *          sysmem;
    void *          retval;

    /*
       Convert request size to internal form by adding (sizeof(size_t)) bytes
       overhead plus possibly more to obtain necessary alignment and/or
       to obtain a size of at least MINSIZE, the smallest allocatable
       size. Also, checked_request2size traps (returning 0) request sizes
       that are so large that they wrap around zero when padded and
       aligned.
       */

    checked_request2size(bytes, nb);

    __MALLOC_LOCK;
    av = get_malloc_state();

    /*
       Bypass search if no frees yet
       */
    if (!have_anychunks(av)) {
	if (av->max_fast == 0) /* initialization check */
	    __malloc_consolidate(av);
	goto use_top;
    }

    /*
       If the size qualifies as a fastbin, first check corresponding bin.
       */

    if ((unsigned long)(nb) <= (unsigned long)(av->max_fast)) {
	fb = &(av->fastbins[(fastbin_index(nb))]);
	if ( (victim = *fb) != 0) {
	    *fb = victim->fd;
	    check_remalloced_chunk(victim, nb);
	    retval = chunk2mem(victim);
	    goto DONE;
	}
    }

    /*
       If a small request, check regular bin.  Since these "smallbins"
       hold one size each, no searching within bins is necessary.
       (For a large request, we need to wait until unsorted chunks are
       processed to find best fit. But for small ones, fits are exact
       anyway, so we can check now, which is faster.)
       */

    if (in_smallbin_range(nb)) {
	idx = smallbin_index(nb);
	bin = bin_at(av,idx);

	if ( (victim = last(bin)) != bin) {
	    bck = victim->bk;
	    set_inuse_bit_at_offset(victim, nb);
	    bin->bk = bck;
	    bck->fd = bin;

	    check_malloced_chunk(victim, nb);
	    retval = chunk2mem(victim);
	    goto DONE;
	}
    }

    /* If this is a large request, consolidate fastbins before continuing.
       While it might look excessive to kill all fastbins before
       even seeing if there is space available, this avoids
       fragmentation problems normally associated with fastbins.
       Also, in practice, programs tend to have runs of either small or
       large requests, but less often mixtures, so consolidation is not
       invoked all that often in most programs. And the programs that
       it is called frequently in otherwise tend to fragment.
       */

    else {
	idx = __malloc_largebin_index(nb);
	if (have_fastchunks(av))
	    __malloc_consolidate(av);
    }

    /*
       Process recently freed or remaindered chunks, taking one only if
       it is exact fit, or, if this a small request, the chunk is remainder from
       the most recent non-exact fit.  Place other traversed chunks in
       bins.  Note that this step is the only place in any routine where
       chunks are placed in bins.
       */

    while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
	bck = victim->bk;
	size = chunksize(victim);

	/* If a small request, try to use last remainder if it is the
	   only chunk in unsorted bin.  This helps promote locality for
	   runs of consecutive small requests. This is the only
	   exception to best-fit, and applies only when there is
	   no exact fit for a small chunk.
	   */

	if (in_smallbin_range(nb) &&
		bck == unsorted_chunks(av) &&
		victim == av->last_remainder &&
		(unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {

	    /* split and reattach remainder */
	    remainder_size = size - nb;
	    remainder = chunk_at_offset(victim, nb);
	    unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
	    av->last_remainder = remainder;
	    remainder->bk = remainder->fd = unsorted_chunks(av);

	    set_head(victim, nb | PREV_INUSE);
	    set_head(remainder, remainder_size | PREV_INUSE);
	    set_foot(remainder, remainder_size);

	    check_malloced_chunk(victim, nb);
	    retval = chunk2mem(victim);
	    goto DONE;
	}

	/* remove from unsorted list */
	unsorted_chunks(av)->bk = bck;
	bck->fd = unsorted_chunks(av);

	/* Take now instead of binning if exact fit */

	if (size == nb) {
	    set_inuse_bit_at_offset(victim, size);
	    check_malloced_chunk(victim, nb);
	    retval = chunk2mem(victim);
	    goto DONE;
	}

	/* place chunk in bin */

	if (in_smallbin_range(size)) {
	    victim_index = smallbin_index(size);
	    bck = bin_at(av, victim_index);
	    fwd = bck->fd;
	}
	else {
	    victim_index = __malloc_largebin_index(size);
	    bck = bin_at(av, victim_index);
	    fwd = bck->fd;

	    if (fwd != bck) {
		/* if smaller than smallest, place first */
		if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) {
		    fwd = bck;
		    bck = bck->bk;
		}
		else if ((unsigned long)(size) >=
			(unsigned long)(FIRST_SORTED_BIN_SIZE)) {

		    /* maintain large bins in sorted order */
		    size |= PREV_INUSE; /* Or with inuse bit to speed comparisons */
		    while ((unsigned long)(size) < (unsigned long)(fwd->size))
			fwd = fwd->fd;
		    bck = fwd->bk;
		}
	    }
	}

	mark_bin(av, victim_index);
	victim->bk = bck;
	victim->fd = fwd;
	fwd->bk = victim;
	bck->fd = victim;
    }

    /*
       If a large request, scan through the chunks of current bin to
       find one that fits.  (This will be the smallest that fits unless
       FIRST_SORTED_BIN_SIZE has been changed from default.)  This is
       the only step where an unbounded number of chunks might be
       scanned without doing anything useful with them. However the
       lists tend to be short.
       */

    if (!in_smallbin_range(nb)) {
	bin = bin_at(av, idx);

	for (victim = last(bin); victim != bin; victim = victim->bk) {
	    size = chunksize(victim);

	    if ((unsigned long)(size) >= (unsigned long)(nb)) {
		remainder_size = size - nb;
		unlink(victim, bck, fwd);

		/* Exhaust */
		if (remainder_size < MINSIZE)  {
		    set_inuse_bit_at_offset(victim, size);
		    check_malloced_chunk(victim, nb);
		    retval = chunk2mem(victim);
		    goto DONE;
		}
		/* Split */
		else {
		    remainder = chunk_at_offset(victim, nb);
		    unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
		    remainder->bk = remainder->fd = unsorted_chunks(av);
		    set_head(victim, nb | PREV_INUSE);
		    set_head(remainder, remainder_size | PREV_INUSE);
		    set_foot(remainder, remainder_size);
		    check_malloced_chunk(victim, nb);
		    retval = chunk2mem(victim);
		    goto DONE;
		}
	    }
	}
    }

    /*
       Search for a chunk by scanning bins, starting with next largest
       bin. This search is strictly by best-fit; i.e., the smallest
       (with ties going to approximately the least recently used) chunk
       that fits is selected.

       The bitmap avoids needing to check that most blocks are nonempty.
       */

    ++idx;
    bin = bin_at(av,idx);
    block = idx2block(idx);
    map = av->binmap[block];
    bit = idx2bit(idx);

    for (;;) {

	/* Skip rest of block if there are no more set bits in this block.  */
	if (bit > map || bit == 0) {
	    do {
		if (++block >= BINMAPSIZE)  /* out of bins */
		    goto use_top;
	    } while ( (map = av->binmap[block]) == 0);

	    bin = bin_at(av, (block << BINMAPSHIFT));
	    bit = 1;
	}

	/* Advance to bin with set bit. There must be one. */
	while ((bit & map) == 0) {
	    bin = next_bin(bin);
	    bit <<= 1;
	    assert(bit != 0);
	}

	/* Inspect the bin. It is likely to be non-empty */
	victim = last(bin);

	/*  If a false alarm (empty bin), clear the bit. */
	if (victim == bin) {
	    av->binmap[block] = map &= ~bit; /* Write through */
	    bin = next_bin(bin);
	    bit <<= 1;
	}

	else {
	    size = chunksize(victim);

	    /*  We know the first chunk in this bin is big enough to use. */
	    assert((unsigned long)(size) >= (unsigned long)(nb));

	    remainder_size = size - nb;

	    /* unlink */
	    bck = victim->bk;
	    bin->bk = bck;
	    bck->fd = bin;

	    /* Exhaust */
	    if (remainder_size < MINSIZE) {
		set_inuse_bit_at_offset(victim, size);
		check_malloced_chunk(victim, nb);
		retval = chunk2mem(victim);
		goto DONE;
	    }

	    /* Split */
	    else {
		remainder = chunk_at_offset(victim, nb);

		unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
		remainder->bk = remainder->fd = unsorted_chunks(av);
		/* advertise as last remainder */
		if (in_smallbin_range(nb))
		    av->last_remainder = remainder;

		set_head(victim, nb | PREV_INUSE);
		set_head(remainder, remainder_size | PREV_INUSE);
		set_foot(remainder, remainder_size);
		check_malloced_chunk(victim, nb);
		retval = chunk2mem(victim);
		goto DONE;
	    }
	}
    }

use_top:
    /*
       If large enough, split off the chunk bordering the end of memory
       (held in av->top). Note that this is in accord with the best-fit
       search rule.  In effect, av->top is treated as larger (and thus
       less well fitting) than any other available chunk since it can
       be extended to be as large as necessary (up to system
       limitations).

       We require that av->top always exists (i.e., has size >=
       MINSIZE) after initialization, so if it would otherwise be
       exhuasted by current request, it is replenished. (The main
       reason for ensuring it exists is that we may need MINSIZE space
       to put in fenceposts in sysmalloc.)
       */

    victim = av->top;
    size = chunksize(victim);

    if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
	remainder_size = size - nb;
	remainder = chunk_at_offset(victim, nb);
	av->top = remainder;
	set_head(victim, nb | PREV_INUSE);
	set_head(remainder, remainder_size | PREV_INUSE);

	check_malloced_chunk(victim, nb);
	retval = chunk2mem(victim);
	goto DONE;
    }

    /* If no space in top, relay to handle system-dependent cases */
    sysmem = __malloc_alloc(nb, av);
    retval = sysmem;
DONE:
    __MALLOC_UNLOCK;
    return retval;
}

/* glibc compatibilty  */
weak_alias(malloc, __libc_malloc)