1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
|
/* mconf.h
* <math.h>
* ISO/IEC 9899:1999 -- Programming Languages C: 7.12 Mathematics
* Derived from the Cephes Math Library Release 2.3
* Copyright 1984, 1987, 1989, 1995 by Stephen L. Moshier
*
*
* DESCRIPTION:
*
* The file also includes a conditional assembly definition
* for the type of computer arithmetic (IEEE, DEC, Motorola
* IEEE, or UNKnown).
*
* For Digital Equipment PDP-11 and VAX computers, certain
* IBM systems, and others that use numbers with a 56-bit
* significand, the symbol DEC should be defined. In this
* mode, most floating point constants are given as arrays
* of octal integers to eliminate decimal to binary conversion
* errors that might be introduced by the compiler.
*
* For little-endian computers, such as IBM PC, that follow the
* IEEE Standard for Binary Floating Point Arithmetic (ANSI/IEEE
* Std 754-1985), the symbol IBMPC should be defined. These
* numbers have 53-bit significands. In this mode, constants
* are provided as arrays of hexadecimal 16 bit integers.
*
* Big-endian IEEE format is denoted MIEEE. On some RISC
* systems such as Sun SPARC, double precision constants
* must be stored on 8-byte address boundaries. Since integer
* arrays may be aligned differently, the MIEEE configuration
* may fail on such machines.
*
* To accommodate other types of computer arithmetic, all
* constants are also provided in a normal decimal radix
* which one can hope are correctly converted to a suitable
* format by the available C language compiler. To invoke
* this mode, define the symbol UNK.
*
* An important difference among these modes is a predefined
* set of machine arithmetic constants for each. The numbers
* MACHEP (the machine roundoff error), MAXNUM (largest number
* represented), and several other parameters are preset by
* the configuration symbol. Check the file const.c to
* ensure that these values are correct for your computer.
*
* Configurations NANS, INFINITIES, MINUSZERO, and DENORMAL
* may fail on many systems. Verify that they are supposed
* to work on your computer.
*/
#ifndef _MATH_H
#define _MATH_H 1
#include <features.h>
#ifndef __UCLIBC_HAS_FLOATS__
#define float int
#endif
#ifndef __UCLIBC_HAS_DOUBLE__
#define double int
#endif
#ifndef __UCLIBC_HAS_LONG_DOUBLE__
#define long
#ifndef double
# define double int
#endif
#endif
/* Type of computer arithmetic */
/* PDP-11, Pro350, VAX:
*/
/* #define DEC 1 */
/* Intel IEEE, low order words come first:
*/
/* #define IBMPC 1 */
/* Motorola IEEE, high order words come first
* (Sun 680x0 workstation):
*/
/* #define MIEEE 1 */
/* UNKnown arithmetic, invokes coefficients given in
* normal decimal format. Beware of range boundary
* problems (MACHEP, MAXLOG, etc. in const.c) and
* roundoff problems in pow.c:
* (Sun SPARCstation)
*/
#define UNK 1
/* Define if the `long double' type works. */
#define HAVE_LONG_DOUBLE 1
/* Define as the return type of signal handlers (int or void). */
#define RETSIGTYPE void
/* Define if you have the ANSI C header files. */
#define STDC_HEADERS 1
/* Define if your processor stores words with the most significant
byte first (like Motorola and SPARC, unlike Intel and VAX). */
/* #undef WORDS_BIGENDIAN */
/* Define if floating point words are bigendian. */
/* #undef FLOAT_WORDS_BIGENDIAN */
/* The number of bytes in a int. */
#define SIZEOF_INT 4
/* Define if you have the <string.h> header file. */
#define HAVE_STRING_H 1
/* Define this `volatile' if your compiler thinks
* that floating point arithmetic obeys the associative
* and distributive laws. It will defeat some optimizations
* (but probably not enough of them).
*
* #define VOLATILE volatile
*/
#define VOLATILE
/* For 12-byte long doubles on an i386, pad a 16-bit short 0
* to the end of real constants initialized by integer arrays.
*
* #define XPD 0,
*
* Otherwise, the type is 10 bytes long and XPD should be
* defined blank (e.g., Microsoft C).
*
* #define XPD
*/
#define XPD 0,
/* Define to support tiny denormal numbers, else undefine. */
#define DENORMAL 1
/* Define to ask for infinity support, else undefine. */
#define INFINITIES 1
/* Define to ask for support of numbers that are Not-a-Number,
else undefine. This may automatically define INFINITIES in some files. */
#define NANS 1
/* Define to distinguish between -0.0 and +0.0. */
#define MINUSZERO 1
/* Define 1 for ANSI C atan2() function
and ANSI prototypes for float arguments.
See atan.c and clog.c. */
#define ANSIC 1
#define ANSIPROT 1
/* Constant definitions for math error conditions */
#define DOMAIN 1 /* argument domain error */
#define SING 2 /* argument singularity */
#define OVERFLOW 3 /* overflow range error */
#define UNDERFLOW 4 /* underflow range error */
#define TLOSS 5 /* total loss of precision */
#define PLOSS 6 /* partial loss of precision */
#define EDOM 33
#define ERANGE 34
/* Complex numeral. */
typedef struct
{
double r;
double i;
} cmplx;
typedef struct
{
float r;
float i;
} cmplxf;
#ifdef HAVE_LONG_DOUBLE
/* Long double complex numeral. */
typedef struct
{
long double r;
long double i;
} cmplxl;
#endif
/* Variable for error reporting. See mtherr.c. */
extern int mtherr();
extern int merror;
/* If you define UNK, then be sure to set BIGENDIAN properly. */
#include <endian.h>
#if __BYTE_ORDER == __BIG_ENDIAN
# define BIGENDIAN 1
#else /* __BYTE_ORDER == __LITTLE_ENDIAN */
# define BIGENDIAN 0
#endif
#define __USE_ISOC9X
/* Get general and ISO C 9X specific information. */
#include <bits/mathdef.h>
#undef INFINITY
#undef DECIMAL_DIG
#undef FP_ILOGB0
#undef FP_ILOGBNAN
/* Get the architecture specific values describing the floating-point
evaluation. The following symbols will get defined:
float_t floating-point type at least as wide as `float' used
to evaluate `float' expressions
double_t floating-point type at least as wide as `double' used
to evaluate `double' expressions
FLT_EVAL_METHOD
Defined to
0 if `float_t' is `float' and `double_t' is `double'
1 if `float_t' and `double_t' are `double'
2 if `float_t' and `double_t' are `long double'
else `float_t' and `double_t' are unspecified
INFINITY representation of the infinity value of type `float'
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
If defined it indicates that the `fma' function
generally executes about as fast as a multiply and an add.
This macro is defined only iff the `fma' function is
implemented directly with a hardware multiply-add instructions.
FP_ILOGB0 Expands to a value returned by `ilogb (0.0)'.
FP_ILOGBNAN Expands to a value returned by `ilogb (NAN)'.
DECIMAL_DIG Number of decimal digits supported by conversion between
decimal and all internal floating-point formats.
*/
/* All floating-point numbers can be put in one of these categories. */
enum
{
FP_NAN,
# define FP_NAN FP_NAN
FP_INFINITE,
# define FP_INFINITE FP_INFINITE
FP_ZERO,
# define FP_ZERO FP_ZERO
FP_SUBNORMAL,
# define FP_SUBNORMAL FP_SUBNORMAL
FP_NORMAL
# define FP_NORMAL FP_NORMAL
};
/* Return number of classification appropriate for X. */
# ifdef __NO_LONG_DOUBLE_MATH
# define fpclassify(x) \
(sizeof (x) == sizeof (float) ? __fpclassifyf (x) : __fpclassify (x))
# else
# define fpclassify(x) \
(sizeof (x) == sizeof (float) ? \
__fpclassifyf (x) \
: sizeof (x) == sizeof (double) ? \
__fpclassify (x) : __fpclassifyl (x))
# endif
/* Return nonzero value if sign of X is negative. */
int signbit(double x);
int signbitl(long double x);
/* Return nonzero value if X is not +-Inf or NaN. */
int isfinite(double x);
int isfinitel(long double x);
/* Return nonzero value if X is neither zero, subnormal, Inf, nor NaN. */
# define isnormal(x) (fpclassify (x) == FP_NORMAL)
/* Return nonzero value if X is a NaN */
int isnan(double x);
int isnanl(long double x);
/* Return nonzero value is X is positive or negative infinity. */
# ifdef __NO_LONG_DOUBLE_MATH
# define isinf(x) \
(sizeof (x) == sizeof (float) ? __isinff (x) : __isinf (x))
# else
# define isinf(x) \
(sizeof (x) == sizeof (float) ? \
__isinff (x) \
: sizeof (x) == sizeof (double) ? \
__isinf (x) : __isinfl (x))
# endif
/* Some useful constants. */
#if defined __USE_BSD || defined __USE_XOPEN
# define M_E 2.7182818284590452354 /* e */
# define M_LOG2E 1.4426950408889634074 /* log_2 e */
# define M_LOG10E 0.43429448190325182765 /* log_10 e */
# define M_LN2 0.69314718055994530942 /* log_e 2 */
# define M_LN10 2.30258509299404568402 /* log_e 10 */
# define M_PI 3.14159265358979323846 /* pi */
# define M_PI_2 1.57079632679489661923 /* pi/2 */
# define M_PI_4 0.78539816339744830962 /* pi/4 */
# define M_1_PI 0.31830988618379067154 /* 1/pi */
# define M_2_PI 0.63661977236758134308 /* 2/pi */
# define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
# define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
# define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
#ifdef __USE_GNU
# define M_El M_E
# define M_LOG2El M_LOG2E
# define M_LOG10El M_LOG10E
# define M_LN2l M_LN2
# define M_LN10l M_LN10
# define M_PIl M_PI
# define M_PI_2l M_PI_2
# define M_PI_4l M_PI_4
# define M_1_PIl M_1_PI
# define M_2_PIl M_2_PI
# define M_2_SQRTPIl M_2_SQRTPI
# define M_SQRT2l M_SQRT2
# define M_SQRT1_2l M_SQRT1_2
#endif
/* 7.12.4 Trigonometric functions */
extern double acos(double x);
extern float acosf(float x);
extern long double acosl(long double x);
extern double asin(double x);
extern float asinf(float x);
extern long double asinl(long double x);
extern double atan(double x);
extern float atanf(float x);
extern long double atanl(long double x);
double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);
double cos(double x);
float cosf(float x);
long double cosl(long double x);
double sin(double x);
float sinf(float x);
long double sinl(long double x);
double tan(double x);
float tanf(float x);
long double tanl(long double x);
/* 7.12.5 Hyperbolic functions */
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);
double cosh(double x);
float coshf(float x);
long double coshl(long double x);
double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);
double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);
/* 7.12.6 Exponential and logarithmic functions */
double exp(double x);
float expf(float x);
long double expl(long double x);
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
double frexp(double value, int *exp);
float frexpf(float value, int *exp);
long double frexpl(long double value, int *exp);
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);
double log(double x);
float logf(float x);
long double logl(long double x);
double log10(double x);
float log10f(float x);
long double log10l(long double x);
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);
double log2(double x);
float log2f(float x);
long double log2l(long double x);
double logb(double x);
float logbf(float x);
long double logbl(long double x);
double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);
/* 7.12.7 Power and absolute-value functions */
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
/* 7.12.8 Error and gamma functions */
double erf(double x);
float erff(float x);
long double erfl(long double x);
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
/* 7.12.9 Nearest integer functions */
double ceil(double x);
float ceilf(float x);
long double ceill(long double x);
double floor(double x);
float floorf(float x);
long double floorl(long double x);
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
double rint(double x);
float rintf(float x);
long double rintl(long double x);
long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);
double round(double x);
float roundf(float x);
long double roundl(long double x);
long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
/* 7.12.10 Remainder functions */
double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);
/* 7.12.11 Manipulation functions */
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);
double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
/* 7.12.12 Maximum, minimum, and positive difference functions */
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
/* 7.12.13 Floating multiply-add */
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);
/* 7.12.14 Comparison macros */
# ifndef isgreater
# define isgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x > __y; }))
# endif
/* Return nonzero value if X is greater than or equal to Y. */
# ifndef isgreaterequal
# define isgreaterequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x >= __y; }))
# endif
/* Return nonzero value if X is less than Y. */
# ifndef isless
# define isless(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x < __y; }))
# endif
/* Return nonzero value if X is less than or equal to Y. */
# ifndef islessequal
# define islessequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && __x <= __y; }))
# endif
/* Return nonzero value if either X is less than Y or Y is less than X. */
# ifndef islessgreater
# define islessgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered (__x, __y) && (__x < __y || __y < __x); }))
# endif
/* Return nonzero value if arguments are unordered. */
# ifndef isunordered
# define isunordered(u, v) \
(__extension__ \
({ __typeof__(u) __u = (u); __typeof__(v) __v = (v); \
fpclassify (__u) == FP_NAN || fpclassify (__v) == FP_NAN; }))
# endif
#ifndef __UCLIBC_HAS_FLOATS__
#undef float
#endif
#ifndef __UCLIBC_HAS_DOUBLE__
#undef double
#endif
#ifndef __UCLIBC_HAS_LONG_DOUBLE__
#undef long
#undef double
#endif
#endif /* math.h */
|