diff options
Diffstat (limited to 'test/math/drand.c')
-rw-r--r-- | test/math/drand.c | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/test/math/drand.c b/test/math/drand.c new file mode 100644 index 000000000..9eedf71fc --- /dev/null +++ b/test/math/drand.c @@ -0,0 +1,158 @@ +/* drand.c + * + * Pseudorandom number generator + * + * + * + * SYNOPSIS: + * + * double y, drand(); + * + * drand( &y ); + * + * + * + * DESCRIPTION: + * + * Yields a random number 1.0 <= y < 2.0. + * + * The three-generator congruential algorithm by Brian + * Wichmann and David Hill (BYTE magazine, March, 1987, + * pp 127-8) is used. The period, given by them, is + * 6953607871644. + * + * Versions invoked by the different arithmetic compile + * time options DEC, IBMPC, and MIEEE, produce + * approximately the same sequences, differing only in the + * least significant bits of the numbers. The UNK option + * implements the algorithm as recommended in the BYTE + * article. It may be used on all computers. However, + * the low order bits of a double precision number may + * not be adequately random, and may vary due to arithmetic + * implementation details on different computers. + * + * The other compile options generate an additional random + * integer that overwrites the low order bits of the double + * precision number. This reduces the period by a factor of + * two but tends to overcome the problems mentioned. + * + */ + + + +#include "mconf.h" + + +/* Three-generator random number algorithm + * of Brian Wichmann and David Hill + * BYTE magazine, March, 1987 pp 127-8 + * + * The period, given by them, is (p-1)(q-1)(r-1)/4 = 6.95e12. + */ + +static int sx = 1; +static int sy = 10000; +static int sz = 3000; + +static union { + double d; + unsigned short s[4]; +} unkans; + +/* This function implements the three + * congruential generators. + */ + +int ranwh() +{ +int r, s; + +/* sx = sx * 171 mod 30269 */ +r = sx/177; +s = sx - 177 * r; +sx = 171 * s - 2 * r; +if( sx < 0 ) + sx += 30269; + + +/* sy = sy * 172 mod 30307 */ +r = sy/176; +s = sy - 176 * r; +sy = 172 * s - 35 * r; +if( sy < 0 ) + sy += 30307; + +/* sz = 170 * sz mod 30323 */ +r = sz/178; +s = sz - 178 * r; +sz = 170 * s - 63 * r; +if( sz < 0 ) + sz += 30323; +/* The results are in static sx, sy, sz. */ +return 0; +} + +/* drand.c + * + * Random double precision floating point number between 1 and 2. + * + * C callable: + * drand( &x ); + */ + +int drand( a ) +double *a; +{ +unsigned short r; +#ifdef DEC +unsigned short s, t; +#endif + +/* This algorithm of Wichmann and Hill computes a floating point + * result: + */ +ranwh(); +unkans.d = sx/30269.0 + sy/30307.0 + sz/30323.0; +r = unkans.d; +unkans.d -= r; +unkans.d += 1.0; + +/* if UNK option, do nothing further. + * Otherwise, make a random 16 bit integer + * to overwrite the least significant word + * of unkans. + */ +#ifdef UNK +/* do nothing */ +#else +ranwh(); +r = sx * sy + sz; +#endif + +#ifdef DEC +/* To make the numbers as similar as possible + * in all arithmetics, the random integer has + * to be inserted 3 bits higher up in a DEC number. + * An alternative would be put it 3 bits lower down + * in all the other number types. + */ +s = unkans.s[2]; +t = s & 07; /* save these bits to put in at the bottom */ +s &= 0177770; +s |= (r >> 13) & 07; +unkans.s[2] = s; +t |= r << 3; +unkans.s[3] = t; +#endif + +#ifdef IBMPC +unkans.s[0] = r; +#endif + +#ifdef MIEEE +unkans.s[3] = r; +#endif + +*a = unkans.d; +return 0; +} |