diff options
Diffstat (limited to 'libm/ldouble/tanl.c')
-rw-r--r-- | libm/ldouble/tanl.c | 279 |
1 files changed, 0 insertions, 279 deletions
diff --git a/libm/ldouble/tanl.c b/libm/ldouble/tanl.c deleted file mode 100644 index e546dd664..000000000 --- a/libm/ldouble/tanl.c +++ /dev/null @@ -1,279 +0,0 @@ -/* tanl.c - * - * Circular tangent, long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, tanl(); - * - * y = tanl( x ); - * - * - * - * DESCRIPTION: - * - * Returns the circular tangent of the radian argument x. - * - * Range reduction is modulo pi/4. A rational function - * x + x**3 P(x**2)/Q(x**2) - * is employed in the basic interval [0, pi/4]. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE +-1.07e9 30000 1.9e-19 4.8e-20 - * - * ERROR MESSAGES: - * - * message condition value returned - * tan total loss x > 2^39 0.0 - * - */ -/* cotl.c - * - * Circular cotangent, long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, cotl(); - * - * y = cotl( x ); - * - * - * - * DESCRIPTION: - * - * Returns the circular cotangent of the radian argument x. - * - * Range reduction is modulo pi/4. A rational function - * x + x**3 P(x**2)/Q(x**2) - * is employed in the basic interval [0, pi/4]. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE +-1.07e9 30000 1.9e-19 5.1e-20 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * cot total loss x > 2^39 0.0 - * cot singularity x = 0 INFINITYL - * - */ - -/* -Cephes Math Library Release 2.7: May, 1998 -Copyright 1984, 1990, 1998 by Stephen L. Moshier -*/ - -#include <math.h> - -#ifdef UNK -static long double P[] = { --1.3093693918138377764608E4L, - 1.1535166483858741613983E6L, --1.7956525197648487798769E7L, -}; -static long double Q[] = { -/* 1.0000000000000000000000E0L,*/ - 1.3681296347069295467845E4L, --1.3208923444021096744731E6L, - 2.5008380182335791583922E7L, --5.3869575592945462988123E7L, -}; -static long double DP1 = 7.853981554508209228515625E-1L; -static long double DP2 = 7.946627356147928367136046290398E-9L; -static long double DP3 = 3.061616997868382943065164830688E-17L; -#endif - - -#ifdef IBMPC -static short P[] = { -0xbc1c,0x79f9,0xc692,0xcc96,0xc00c, XPD -0xe5b1,0xe4ee,0x652f,0x8ccf,0x4013, XPD -0xaf9a,0x4c8b,0x5699,0x88ff,0xc017, XPD -}; -static short Q[] = { -/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/ -0x8ed4,0x9b2b,0x2f75,0xd5c5,0x400c, XPD -0xadcd,0x55e4,0xe2c1,0xa13d,0xc013, XPD -0x7adf,0x56c7,0x7e17,0xbecc,0x4017, XPD -0x86f6,0xf2d1,0x01e5,0xcd7f,0xc018, XPD -}; -static short P1[] = {0x0000,0x0000,0xda80,0xc90f,0x3ffe, XPD}; -static short P2[] = {0x0000,0x0000,0xa300,0x8885,0x3fe4, XPD}; -static short P3[] = {0x3707,0xa2e0,0x3198,0x8d31,0x3fc8, XPD}; -#define DP1 *(long double *)P1 -#define DP2 *(long double *)P2 -#define DP3 *(long double *)P3 -#endif - -#ifdef MIEEE -static long P[] = { -0xc00c0000,0xcc96c692,0x79f9bc1c, -0x40130000,0x8ccf652f,0xe4eee5b1, -0xc0170000,0x88ff5699,0x4c8baf9a, -}; -static long Q[] = { -/*0x3fff0000,0x80000000,0x00000000,*/ -0x400c0000,0xd5c52f75,0x9b2b8ed4, -0xc0130000,0xa13de2c1,0x55e4adcd, -0x40170000,0xbecc7e17,0x56c77adf, -0xc0180000,0xcd7f01e5,0xf2d186f6, -}; -static long P1[] = {0x3ffe0000,0xc90fda80,0x00000000}; -static long P2[] = {0x3fe40000,0x8885a300,0x00000000}; -static long P3[] = {0x3fc80000,0x8d313198,0xa2e03707}; -#define DP1 *(long double *)P1 -#define DP2 *(long double *)P2 -#define DP3 *(long double *)P3 -#endif - -static long double lossth = 5.49755813888e11L; /* 2^39 */ -extern long double PIO4L; -extern long double MAXNUML; - -#ifdef ANSIPROT -extern long double polevll ( long double, void *, int ); -extern long double p1evll ( long double, void *, int ); -extern long double floorl ( long double ); -extern long double ldexpl ( long double, int ); -extern int isnanl ( long double ); -extern int isfinitel ( long double ); -static long double tancotl( long double, int ); -#else -long double polevll(), p1evll(), floorl(), ldexpl(), isnanl(), isfinitel(); -static long double tancotl(); -#endif -#ifdef INFINITIES -extern long double INFINITYL; -#endif -#ifdef NANS -extern long double NANL; -#endif - -long double tanl(x) -long double x; -{ - -#ifdef NANS -if( isnanl(x) ) - return(x); -#endif -#ifdef MINUSZERO -if( x == 0.0L ) - return(x); -#endif -#ifdef NANS -if( !isfinitel(x) ) - { - mtherr( "tanl", DOMAIN ); - return(NANL); - } -#endif -return( tancotl(x,0) ); -} - - -long double cotl(x) -long double x; -{ - -if( x == 0.0L ) - { - mtherr( "cotl", SING ); -#ifdef INFINITIES - return( INFINITYL ); -#else - return( MAXNUML ); -#endif - } -return( tancotl(x,1) ); -} - - -static long double tancotl( xx, cotflg ) -long double xx; -int cotflg; -{ -long double x, y, z, zz; -int j, sign; - -/* make argument positive but save the sign */ -if( xx < 0.0L ) - { - x = -xx; - sign = -1; - } -else - { - x = xx; - sign = 1; - } - -if( x > lossth ) - { - if( cotflg ) - mtherr( "cotl", TLOSS ); - else - mtherr( "tanl", TLOSS ); - return(0.0L); - } - -/* compute x mod PIO4 */ -y = floorl( x/PIO4L ); - -/* strip high bits of integer part */ -z = ldexpl( y, -4 ); -z = floorl(z); /* integer part of y/16 */ -z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */ - -/* integer and fractional part modulo one octant */ -j = z; - -/* map zeros and singularities to origin */ -if( j & 1 ) - { - j += 1; - y += 1.0L; - } - -z = ((x - y * DP1) - y * DP2) - y * DP3; - -zz = z * z; - -if( zz > 1.0e-20L ) - y = z + z * (zz * polevll( zz, P, 2 )/p1evll(zz, Q, 4)); -else - y = z; - -if( j & 2 ) - { - if( cotflg ) - y = -y; - else - y = -1.0L/y; - } -else - { - if( cotflg ) - y = 1.0L/y; - } - -if( sign < 0 ) - y = -y; - -return( y ); -} |