summaryrefslogtreecommitdiff
path: root/libm/ldouble/tanl.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/ldouble/tanl.c')
-rw-r--r--libm/ldouble/tanl.c279
1 files changed, 0 insertions, 279 deletions
diff --git a/libm/ldouble/tanl.c b/libm/ldouble/tanl.c
deleted file mode 100644
index e546dd664..000000000
--- a/libm/ldouble/tanl.c
+++ /dev/null
@@ -1,279 +0,0 @@
-/* tanl.c
- *
- * Circular tangent, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, tanl();
- *
- * y = tanl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular tangent of the radian argument x.
- *
- * Range reduction is modulo pi/4. A rational function
- * x + x**3 P(x**2)/Q(x**2)
- * is employed in the basic interval [0, pi/4].
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-1.07e9 30000 1.9e-19 4.8e-20
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * tan total loss x > 2^39 0.0
- *
- */
- /* cotl.c
- *
- * Circular cotangent, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, cotl();
- *
- * y = cotl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular cotangent of the radian argument x.
- *
- * Range reduction is modulo pi/4. A rational function
- * x + x**3 P(x**2)/Q(x**2)
- * is employed in the basic interval [0, pi/4].
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-1.07e9 30000 1.9e-19 5.1e-20
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * cot total loss x > 2^39 0.0
- * cot singularity x = 0 INFINITYL
- *
- */
-
-/*
-Cephes Math Library Release 2.7: May, 1998
-Copyright 1984, 1990, 1998 by Stephen L. Moshier
-*/
-
-#include <math.h>
-
-#ifdef UNK
-static long double P[] = {
--1.3093693918138377764608E4L,
- 1.1535166483858741613983E6L,
--1.7956525197648487798769E7L,
-};
-static long double Q[] = {
-/* 1.0000000000000000000000E0L,*/
- 1.3681296347069295467845E4L,
--1.3208923444021096744731E6L,
- 2.5008380182335791583922E7L,
--5.3869575592945462988123E7L,
-};
-static long double DP1 = 7.853981554508209228515625E-1L;
-static long double DP2 = 7.946627356147928367136046290398E-9L;
-static long double DP3 = 3.061616997868382943065164830688E-17L;
-#endif
-
-
-#ifdef IBMPC
-static short P[] = {
-0xbc1c,0x79f9,0xc692,0xcc96,0xc00c, XPD
-0xe5b1,0xe4ee,0x652f,0x8ccf,0x4013, XPD
-0xaf9a,0x4c8b,0x5699,0x88ff,0xc017, XPD
-};
-static short Q[] = {
-/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
-0x8ed4,0x9b2b,0x2f75,0xd5c5,0x400c, XPD
-0xadcd,0x55e4,0xe2c1,0xa13d,0xc013, XPD
-0x7adf,0x56c7,0x7e17,0xbecc,0x4017, XPD
-0x86f6,0xf2d1,0x01e5,0xcd7f,0xc018, XPD
-};
-static short P1[] = {0x0000,0x0000,0xda80,0xc90f,0x3ffe, XPD};
-static short P2[] = {0x0000,0x0000,0xa300,0x8885,0x3fe4, XPD};
-static short P3[] = {0x3707,0xa2e0,0x3198,0x8d31,0x3fc8, XPD};
-#define DP1 *(long double *)P1
-#define DP2 *(long double *)P2
-#define DP3 *(long double *)P3
-#endif
-
-#ifdef MIEEE
-static long P[] = {
-0xc00c0000,0xcc96c692,0x79f9bc1c,
-0x40130000,0x8ccf652f,0xe4eee5b1,
-0xc0170000,0x88ff5699,0x4c8baf9a,
-};
-static long Q[] = {
-/*0x3fff0000,0x80000000,0x00000000,*/
-0x400c0000,0xd5c52f75,0x9b2b8ed4,
-0xc0130000,0xa13de2c1,0x55e4adcd,
-0x40170000,0xbecc7e17,0x56c77adf,
-0xc0180000,0xcd7f01e5,0xf2d186f6,
-};
-static long P1[] = {0x3ffe0000,0xc90fda80,0x00000000};
-static long P2[] = {0x3fe40000,0x8885a300,0x00000000};
-static long P3[] = {0x3fc80000,0x8d313198,0xa2e03707};
-#define DP1 *(long double *)P1
-#define DP2 *(long double *)P2
-#define DP3 *(long double *)P3
-#endif
-
-static long double lossth = 5.49755813888e11L; /* 2^39 */
-extern long double PIO4L;
-extern long double MAXNUML;
-
-#ifdef ANSIPROT
-extern long double polevll ( long double, void *, int );
-extern long double p1evll ( long double, void *, int );
-extern long double floorl ( long double );
-extern long double ldexpl ( long double, int );
-extern int isnanl ( long double );
-extern int isfinitel ( long double );
-static long double tancotl( long double, int );
-#else
-long double polevll(), p1evll(), floorl(), ldexpl(), isnanl(), isfinitel();
-static long double tancotl();
-#endif
-#ifdef INFINITIES
-extern long double INFINITYL;
-#endif
-#ifdef NANS
-extern long double NANL;
-#endif
-
-long double tanl(x)
-long double x;
-{
-
-#ifdef NANS
-if( isnanl(x) )
- return(x);
-#endif
-#ifdef MINUSZERO
-if( x == 0.0L )
- return(x);
-#endif
-#ifdef NANS
-if( !isfinitel(x) )
- {
- mtherr( "tanl", DOMAIN );
- return(NANL);
- }
-#endif
-return( tancotl(x,0) );
-}
-
-
-long double cotl(x)
-long double x;
-{
-
-if( x == 0.0L )
- {
- mtherr( "cotl", SING );
-#ifdef INFINITIES
- return( INFINITYL );
-#else
- return( MAXNUML );
-#endif
- }
-return( tancotl(x,1) );
-}
-
-
-static long double tancotl( xx, cotflg )
-long double xx;
-int cotflg;
-{
-long double x, y, z, zz;
-int j, sign;
-
-/* make argument positive but save the sign */
-if( xx < 0.0L )
- {
- x = -xx;
- sign = -1;
- }
-else
- {
- x = xx;
- sign = 1;
- }
-
-if( x > lossth )
- {
- if( cotflg )
- mtherr( "cotl", TLOSS );
- else
- mtherr( "tanl", TLOSS );
- return(0.0L);
- }
-
-/* compute x mod PIO4 */
-y = floorl( x/PIO4L );
-
-/* strip high bits of integer part */
-z = ldexpl( y, -4 );
-z = floorl(z); /* integer part of y/16 */
-z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
-
-/* integer and fractional part modulo one octant */
-j = z;
-
-/* map zeros and singularities to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0L;
- }
-
-z = ((x - y * DP1) - y * DP2) - y * DP3;
-
-zz = z * z;
-
-if( zz > 1.0e-20L )
- y = z + z * (zz * polevll( zz, P, 2 )/p1evll(zz, Q, 4));
-else
- y = z;
-
-if( j & 2 )
- {
- if( cotflg )
- y = -y;
- else
- y = -1.0L/y;
- }
-else
- {
- if( cotflg )
- y = 1.0L/y;
- }
-
-if( sign < 0 )
- y = -y;
-
-return( y );
-}