diff options
Diffstat (limited to 'libm/ldouble/powil.c')
-rw-r--r-- | libm/ldouble/powil.c | 164 |
1 files changed, 164 insertions, 0 deletions
diff --git a/libm/ldouble/powil.c b/libm/ldouble/powil.c new file mode 100644 index 000000000..d36c7854e --- /dev/null +++ b/libm/ldouble/powil.c @@ -0,0 +1,164 @@ +/* powil.c + * + * Real raised to integer power, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, powil(); + * int n; + * + * y = powil( x, n ); + * + * + * + * DESCRIPTION: + * + * Returns argument x raised to the nth power. + * The routine efficiently decomposes n as a sum of powers of + * two. The desired power is a product of two-to-the-kth + * powers of x. Thus to compute the 32767 power of x requires + * 28 multiplications instead of 32767 multiplications. + * + * + * + * ACCURACY: + * + * + * Relative error: + * arithmetic x domain n domain # trials peak rms + * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 + * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 + * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 + * + * Returns MAXNUM on overflow, zero on underflow. + * + */ + +/* powil.c */ + +/* +Cephes Math Library Release 2.2: December, 1990 +Copyright 1984, 1990 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + +#include <math.h> +extern long double MAXNUML, MAXLOGL, MINLOGL; +extern long double LOGE2L; +#ifdef ANSIPROT +extern long double frexpl ( long double, int * ); +#else +long double frexpl(); +#endif + +long double powil( x, nn ) +long double x; +int nn; +{ +long double w, y; +long double s; +int n, e, sign, asign, lx; + +if( x == 0.0L ) + { + if( nn == 0 ) + return( 1.0L ); + else if( nn < 0 ) + return( MAXNUML ); + else + return( 0.0L ); + } + +if( nn == 0 ) + return( 1.0L ); + + +if( x < 0.0L ) + { + asign = -1; + x = -x; + } +else + asign = 0; + + +if( nn < 0 ) + { + sign = -1; + n = -nn; + } +else + { + sign = 1; + n = nn; + } + +/* Overflow detection */ + +/* Calculate approximate logarithm of answer */ +s = x; +s = frexpl( s, &lx ); +e = (lx - 1)*n; +if( (e == 0) || (e > 64) || (e < -64) ) + { + s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); + s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L; + } +else + { + s = LOGE2L * e; + } + +if( s > MAXLOGL ) + { + mtherr( "powil", OVERFLOW ); + y = MAXNUML; + goto done; + } + +if( s < MINLOGL ) + { + mtherr( "powil", UNDERFLOW ); + return(0.0L); + } +/* Handle tiny denormal answer, but with less accuracy + * since roundoff error in 1.0/x will be amplified. + * The precise demarcation should be the gradual underflow threshold. + */ +if( s < (-MAXLOGL+2.0L) ) + { + x = 1.0L/x; + sign = -sign; + } + +/* First bit of the power */ +if( n & 1 ) + y = x; + +else + { + y = 1.0L; + asign = 0; + } + +w = x; +n >>= 1; +while( n ) + { + w = w * w; /* arg to the 2-to-the-kth power */ + if( n & 1 ) /* if that bit is set, then include in product */ + y *= w; + n >>= 1; + } + + +done: + +if( asign ) + y = -y; /* odd power of negative number */ +if( sign < 0 ) + y = 1.0L/y; +return(y); +} |