diff options
Diffstat (limited to 'libm/ldouble/incbil.c')
-rw-r--r-- | libm/ldouble/incbil.c | 305 |
1 files changed, 0 insertions, 305 deletions
diff --git a/libm/ldouble/incbil.c b/libm/ldouble/incbil.c deleted file mode 100644 index b7610706b..000000000 --- a/libm/ldouble/incbil.c +++ /dev/null @@ -1,305 +0,0 @@ -/* incbil() - * - * Inverse of imcomplete beta integral - * - * - * - * SYNOPSIS: - * - * long double a, b, x, y, incbil(); - * - * x = incbil( a, b, y ); - * - * - * - * DESCRIPTION: - * - * Given y, the function finds x such that - * - * incbet( a, b, x ) = y. - * - * the routine performs up to 10 Newton iterations to find the - * root of incbet(a,b,x) - y = 0. - * - * - * ACCURACY: - * - * Relative error: - * x a,b - * arithmetic domain domain # trials peak rms - * IEEE 0,1 .5,10000 10000 1.1e-14 1.4e-16 - */ - - -/* -Cephes Math Library Release 2.3: March, 1995 -Copyright 1984, 1995 by Stephen L. Moshier -*/ - -#include <math.h> - -extern long double MACHEPL, MAXNUML, MAXLOGL, MINLOGL; -#ifdef ANSIPROT -extern long double incbetl ( long double, long double, long double ); -extern long double expl ( long double ); -extern long double fabsl ( long double ); -extern long double logl ( long double ); -extern long double sqrtl ( long double ); -extern long double lgaml ( long double ); -extern long double ndtril ( long double ); -#else -long double incbetl(), expl(), fabsl(), logl(), sqrtl(), lgaml(); -long double ndtril(); -#endif - -long double incbil( aa, bb, yy0 ) -long double aa, bb, yy0; -{ -long double a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt; -int i, rflg, dir, nflg; - - -if( yy0 <= 0.0L ) - return(0.0L); -if( yy0 >= 1.0L ) - return(1.0L); -x0 = 0.0L; -yl = 0.0L; -x1 = 1.0L; -yh = 1.0L; -if( aa <= 1.0L || bb <= 1.0L ) - { - dithresh = 1.0e-7L; - rflg = 0; - a = aa; - b = bb; - y0 = yy0; - x = a/(a+b); - y = incbetl( a, b, x ); - nflg = 0; - goto ihalve; - } -else - { - nflg = 0; - dithresh = 1.0e-4L; - } - -/* approximation to inverse function */ - -yp = -ndtril( yy0 ); - -if( yy0 > 0.5L ) - { - rflg = 1; - a = bb; - b = aa; - y0 = 1.0L - yy0; - yp = -yp; - } -else - { - rflg = 0; - a = aa; - b = bb; - y0 = yy0; - } - -lgm = (yp * yp - 3.0L)/6.0L; -x = 2.0L/( 1.0L/(2.0L * a-1.0L) + 1.0L/(2.0L * b - 1.0L) ); -d = yp * sqrtl( x + lgm ) / x - - ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) ) - * (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x)); -d = 2.0L * d; -if( d < MINLOGL ) - { - x = 1.0L; - goto under; - } -x = a/( a + b * expl(d) ); -y = incbetl( a, b, x ); -yp = (y - y0)/y0; -if( fabsl(yp) < 0.2 ) - goto newt; - -/* Resort to interval halving if not close enough. */ -ihalve: - -dir = 0; -di = 0.5L; -for( i=0; i<400; i++ ) - { - if( i != 0 ) - { - x = x0 + di * (x1 - x0); - if( x == 1.0L ) - x = 1.0L - MACHEPL; - if( x == 0.0L ) - { - di = 0.5; - x = x0 + di * (x1 - x0); - if( x == 0.0 ) - goto under; - } - y = incbetl( a, b, x ); - yp = (x1 - x0)/(x1 + x0); - if( fabsl(yp) < dithresh ) - goto newt; - yp = (y-y0)/y0; - if( fabsl(yp) < dithresh ) - goto newt; - } - if( y < y0 ) - { - x0 = x; - yl = y; - if( dir < 0 ) - { - dir = 0; - di = 0.5L; - } - else if( dir > 3 ) - di = 1.0L - (1.0L - di) * (1.0L - di); - else if( dir > 1 ) - di = 0.5L * di + 0.5L; - else - di = (y0 - y)/(yh - yl); - dir += 1; - if( x0 > 0.95L ) - { - if( rflg == 1 ) - { - rflg = 0; - a = aa; - b = bb; - y0 = yy0; - } - else - { - rflg = 1; - a = bb; - b = aa; - y0 = 1.0 - yy0; - } - x = 1.0L - x; - y = incbetl( a, b, x ); - x0 = 0.0; - yl = 0.0; - x1 = 1.0; - yh = 1.0; - goto ihalve; - } - } - else - { - x1 = x; - if( rflg == 1 && x1 < MACHEPL ) - { - x = 0.0L; - goto done; - } - yh = y; - if( dir > 0 ) - { - dir = 0; - di = 0.5L; - } - else if( dir < -3 ) - di = di * di; - else if( dir < -1 ) - di = 0.5L * di; - else - di = (y - y0)/(yh - yl); - dir -= 1; - } - } -mtherr( "incbil", PLOSS ); -if( x0 >= 1.0L ) - { - x = 1.0L - MACHEPL; - goto done; - } -if( x <= 0.0L ) - { -under: - mtherr( "incbil", UNDERFLOW ); - x = 0.0L; - goto done; - } - -newt: - -if( nflg ) - goto done; -nflg = 1; -lgm = lgaml(a+b) - lgaml(a) - lgaml(b); - -for( i=0; i<15; i++ ) - { - /* Compute the function at this point. */ - if( i != 0 ) - y = incbetl(a,b,x); - if( y < yl ) - { - x = x0; - y = yl; - } - else if( y > yh ) - { - x = x1; - y = yh; - } - else if( y < y0 ) - { - x0 = x; - yl = y; - } - else - { - x1 = x; - yh = y; - } - if( x == 1.0L || x == 0.0L ) - break; - /* Compute the derivative of the function at this point. */ - d = (a - 1.0L) * logl(x) + (b - 1.0L) * logl(1.0L - x) + lgm; - if( d < MINLOGL ) - goto done; - if( d > MAXLOGL ) - break; - d = expl(d); - /* Compute the step to the next approximation of x. */ - d = (y - y0)/d; - xt = x - d; - if( xt <= x0 ) - { - y = (x - x0) / (x1 - x0); - xt = x0 + 0.5L * y * (x - x0); - if( xt <= 0.0L ) - break; - } - if( xt >= x1 ) - { - y = (x1 - x) / (x1 - x0); - xt = x1 - 0.5L * y * (x1 - x); - if( xt >= 1.0L ) - break; - } - x = xt; - if( fabsl(d/x) < (128.0L * MACHEPL) ) - goto done; - } -/* Did not converge. */ -dithresh = 256.0L * MACHEPL; -goto ihalve; - -done: -if( rflg ) - { - if( x <= MACHEPL ) - x = 1.0L - MACHEPL; - else - x = 1.0L - x; - } -return( x ); -} |