summaryrefslogtreecommitdiff
path: root/libm/ldouble/exp2l.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/ldouble/exp2l.c')
-rw-r--r--libm/ldouble/exp2l.c166
1 files changed, 0 insertions, 166 deletions
diff --git a/libm/ldouble/exp2l.c b/libm/ldouble/exp2l.c
deleted file mode 100644
index 076f8bca5..000000000
--- a/libm/ldouble/exp2l.c
+++ /dev/null
@@ -1,166 +0,0 @@
-/* exp2l.c
- *
- * Base 2 exponential function, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, exp2l();
- *
- * y = exp2l( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns 2 raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- * x k f
- * 2 = 2 2.
- *
- * A Pade' form
- *
- * 1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
- *
- * approximates 2**x in the basic range [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-16300 300000 9.1e-20 2.6e-20
- *
- *
- * See exp.c for comments on error amplification.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp2l underflow x < -16382 0.0
- * exp2l overflow x >= 16384 MAXNUM
- *
- */
-
-
-/*
-Cephes Math Library Release 2.7: May, 1998
-Copyright 1984, 1991, 1998 by Stephen L. Moshier
-*/
-
-
-
-#include <math.h>
-
-#ifdef UNK
-static long double P[] = {
- 6.0614853552242266094567E1L,
- 3.0286971917562792508623E4L,
- 2.0803843631901852422887E6L,
-};
-static long double Q[] = {
-/* 1.0000000000000000000000E0,*/
- 1.7492876999891839021063E3L,
- 3.2772515434906797273099E5L,
- 6.0027204078348487957118E6L,
-};
-#endif
-
-
-#ifdef IBMPC
-static short P[] = {
-0xffd8,0x6ad6,0x9c2b,0xf275,0x4004, XPD
-0x3426,0x2dc5,0xf19f,0xec9d,0x400d, XPD
-0x7ec0,0xd041,0x02e7,0xfdf4,0x4013, XPD
-};
-static short Q[] = {
-/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
-0x575b,0x9b93,0x34d6,0xdaa9,0x4009, XPD
-0xe38d,0x6d74,0xa4f0,0xa005,0x4011, XPD
-0xb37e,0xcfba,0x40d0,0xb730,0x4015, XPD
-};
-#endif
-
-#ifdef MIEEE
-static long P[] = {
-0x40040000,0xf2759c2b,0x6ad6ffd8,
-0x400d0000,0xec9df19f,0x2dc53426,
-0x40130000,0xfdf402e7,0xd0417ec0,
-};
-static long Q[] = {
-/*0x3fff0000,0x80000000,0x00000000,*/
-0x40090000,0xdaa934d6,0x9b93575b,
-0x40110000,0xa005a4f0,0x6d74e38d,
-0x40150000,0xb73040d0,0xcfbab37e,
-};
-#endif
-
-#define MAXL2L 16384.0L
-#define MINL2L -16382.0L
-
-
-extern long double MAXNUML;
-#ifdef ANSIPROT
-extern long double polevll ( long double, void *, int );
-extern long double p1evll ( long double, void *, int );
-extern long double floorl ( long double );
-extern long double ldexpl ( long double, int );
-extern int isnanl ( long double );
-#else
-long double polevll(), p1evll(), floorl(), ldexpl(), isnanl();
-#endif
-#ifdef INFINITIES
-extern long double INFINITYL;
-#endif
-
-long double exp2l(x)
-long double x;
-{
-long double px, xx;
-int n;
-
-#ifdef NANS
-if( isnanl(x) )
- return(x);
-#endif
-if( x > MAXL2L)
- {
-#ifdef INFINITIES
- return( INFINITYL );
-#else
- mtherr( "exp2l", OVERFLOW );
- return( MAXNUML );
-#endif
- }
-
-if( x < MINL2L )
- {
-#ifndef INFINITIES
- mtherr( "exp2l", UNDERFLOW );
-#endif
- return(0.0L);
- }
-
-xx = x; /* save x */
-/* separate into integer and fractional parts */
-px = floorl(x+0.5L);
-n = px;
-x = x - px;
-
-/* rational approximation
- * exp2(x) = 1.0 + 2xP(xx)/(Q(xx) - P(xx))
- * where xx = x**2
- */
-xx = x * x;
-px = x * polevll( xx, P, 2 );
-x = px / ( p1evll( xx, Q, 3 ) - px );
-x = 1.0L + ldexpl( x, 1 );
-
-/* scale by power of 2 */
-x = ldexpl( x, n );
-return(x);
-}