summaryrefslogtreecommitdiff
path: root/libm/ldouble/ellikl.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/ldouble/ellikl.c')
-rw-r--r--libm/ldouble/ellikl.c148
1 files changed, 0 insertions, 148 deletions
diff --git a/libm/ldouble/ellikl.c b/libm/ldouble/ellikl.c
deleted file mode 100644
index 4eeffe0f5..000000000
--- a/libm/ldouble/ellikl.c
+++ /dev/null
@@ -1,148 +0,0 @@
-/* ellikl.c
- *
- * Incomplete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * long double phi, m, y, ellikl();
- *
- * y = ellikl( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * phi
- * -
- * | |
- * | dt
- * F(phi_\m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points with m in [0, 1] and phi as indicated.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,10 30000 3.6e-18 4.1e-19
- *
- *
- */
-
-
-/*
-Cephes Math Library Release 2.3: November, 1995
-Copyright 1984, 1987, 1995 by Stephen L. Moshier
-*/
-
-/* Incomplete elliptic integral of first kind */
-
-#include <math.h>
-#ifdef ANSIPROT
-extern long double sqrtl ( long double );
-extern long double fabsl ( long double );
-extern long double logl ( long double );
-extern long double tanl ( long double );
-extern long double atanl ( long double );
-extern long double floorl ( long double );
-extern long double ellpkl ( long double );
-long double ellikl ( long double, long double );
-#else
-long double sqrtl(), fabsl(), logl(), tanl(), atanl(), floorl(), ellpkl();
-long double ellikl();
-#endif
-extern long double PIL, PIO2L, MACHEPL, MAXNUML;
-
-long double ellikl( phi, m )
-long double phi, m;
-{
-long double a, b, c, e, temp, t, K;
-int d, mod, sign, npio2;
-
-if( m == 0.0L )
- return( phi );
-a = 1.0L - m;
-if( a == 0.0L )
- {
- if( fabsl(phi) >= PIO2L )
- {
- mtherr( "ellikl", SING );
- return( MAXNUML );
- }
- return( logl( tanl( 0.5L*(PIO2L + phi) ) ) );
- }
-npio2 = floorl( phi/PIO2L );
-if( npio2 & 1 )
- npio2 += 1;
-if( npio2 )
- {
- K = ellpkl( a );
- phi = phi - npio2 * PIO2L;
- }
-else
- K = 0.0L;
-if( phi < 0.0L )
- {
- phi = -phi;
- sign = -1;
- }
-else
- sign = 0;
-b = sqrtl(a);
-t = tanl( phi );
-if( fabsl(t) > 10.0L )
- {
- /* Transform the amplitude */
- e = 1.0L/(b*t);
- /* ... but avoid multiple recursions. */
- if( fabsl(e) < 10.0L )
- {
- e = atanl(e);
- if( npio2 == 0 )
- K = ellpkl( a );
- temp = K - ellikl( e, m );
- goto done;
- }
- }
-a = 1.0L;
-c = sqrtl(m);
-d = 1;
-mod = 0;
-
-while( fabsl(c/a) > MACHEPL )
- {
- temp = b/a;
- phi = phi + atanl(t*temp) + mod * PIL;
- mod = (phi + PIO2L)/PIL;
- t = t * ( 1.0L + temp )/( 1.0L - temp * t * t );
- c = 0.5L * ( a - b );
- temp = sqrtl( a * b );
- a = 0.5L * ( a + b );
- b = temp;
- d += d;
- }
-
-temp = (atanl(t) + mod * PIL)/(d * a);
-
-done:
-if( sign < 0 )
- temp = -temp;
-temp += npio2 * K;
-return( temp );
-}