summaryrefslogtreecommitdiff
path: root/libm/ldouble/cmplxl.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/ldouble/cmplxl.c')
-rw-r--r--libm/ldouble/cmplxl.c461
1 files changed, 0 insertions, 461 deletions
diff --git a/libm/ldouble/cmplxl.c b/libm/ldouble/cmplxl.c
deleted file mode 100644
index ef130618d..000000000
--- a/libm/ldouble/cmplxl.c
+++ /dev/null
@@ -1,461 +0,0 @@
-/* cmplxl.c
- *
- * Complex number arithmetic
- *
- *
- *
- * SYNOPSIS:
- *
- * typedef struct {
- * long double r; real part
- * long double i; imaginary part
- * }cmplxl;
- *
- * cmplxl *a, *b, *c;
- *
- * caddl( a, b, c ); c = b + a
- * csubl( a, b, c ); c = b - a
- * cmull( a, b, c ); c = b * a
- * cdivl( a, b, c ); c = b / a
- * cnegl( c ); c = -c
- * cmovl( b, c ); c = b
- *
- *
- *
- * DESCRIPTION:
- *
- * Addition:
- * c.r = b.r + a.r
- * c.i = b.i + a.i
- *
- * Subtraction:
- * c.r = b.r - a.r
- * c.i = b.i - a.i
- *
- * Multiplication:
- * c.r = b.r * a.r - b.i * a.i
- * c.i = b.r * a.i + b.i * a.r
- *
- * Division:
- * d = a.r * a.r + a.i * a.i
- * c.r = (b.r * a.r + b.i * a.i)/d
- * c.i = (b.i * a.r - b.r * a.i)/d
- * ACCURACY:
- *
- * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
- * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had
- * peak relative error 8.3e-17, rms 2.1e-17.
- *
- * Tests in the rectangle {-10,+10}:
- * Relative error:
- * arithmetic function # trials peak rms
- * DEC cadd 10000 1.4e-17 3.4e-18
- * IEEE cadd 100000 1.1e-16 2.7e-17
- * DEC csub 10000 1.4e-17 4.5e-18
- * IEEE csub 100000 1.1e-16 3.4e-17
- * DEC cmul 3000 2.3e-17 8.7e-18
- * IEEE cmul 100000 2.1e-16 6.9e-17
- * DEC cdiv 18000 4.9e-17 1.3e-17
- * IEEE cdiv 100000 3.7e-16 1.1e-16
- */
- /* cmplx.c
- * complex number arithmetic
- */
-
-
-/*
-Cephes Math Library Release 2.3: March, 1995
-Copyright 1984, 1995 by Stephen L. Moshier
-*/
-
-
-#include <math.h>
-
-/*
-typedef struct
- {
- long double r;
- long double i;
- }cmplxl;
-*/
-
-#ifdef ANSIPROT
-extern long double fabsl ( long double );
-extern long double cabsl ( cmplxl * );
-extern long double sqrtl ( long double );
-extern long double atan2l ( long double, long double );
-extern long double cosl ( long double );
-extern long double sinl ( long double );
-extern long double frexpl ( long double, int * );
-extern long double ldexpl ( long double, int );
-extern int isnanl ( long double );
-void cdivl ( cmplxl *, cmplxl *, cmplxl * );
-void caddl ( cmplxl *, cmplxl *, cmplxl * );
-#else
-long double fabsl(), cabsl(), sqrtl(), atan2l(), cosl(), sinl();
-long double frexpl(), ldexpl();
-int isnanl();
-void cdivl(), caddl();
-#endif
-
-
-extern double MAXNUML, MACHEPL, PIL, PIO2L, INFINITYL, NANL;
-cmplx czerol = {0.0L, 0.0L};
-cmplx conel = {1.0L, 0.0L};
-
-
-/* c = b + a */
-
-void caddl( a, b, c )
-register cmplxl *a, *b;
-cmplxl *c;
-{
-
-c->r = b->r + a->r;
-c->i = b->i + a->i;
-}
-
-
-/* c = b - a */
-
-void csubl( a, b, c )
-register cmplxl *a, *b;
-cmplxl *c;
-{
-
-c->r = b->r - a->r;
-c->i = b->i - a->i;
-}
-
-/* c = b * a */
-
-void cmull( a, b, c )
-register cmplxl *a, *b;
-cmplxl *c;
-{
-long double y;
-
-y = b->r * a->r - b->i * a->i;
-c->i = b->r * a->i + b->i * a->r;
-c->r = y;
-}
-
-
-
-/* c = b / a */
-
-void cdivl( a, b, c )
-register cmplxl *a, *b;
-cmplxl *c;
-{
-long double y, p, q, w;
-
-
-y = a->r * a->r + a->i * a->i;
-p = b->r * a->r + b->i * a->i;
-q = b->i * a->r - b->r * a->i;
-
-if( y < 1.0L )
- {
- w = MAXNUML * y;
- if( (fabsl(p) > w) || (fabsl(q) > w) || (y == 0.0L) )
- {
- c->r = INFINITYL;
- c->i = INFINITYL;
- mtherr( "cdivl", OVERFLOW );
- return;
- }
- }
-c->r = p/y;
-c->i = q/y;
-}
-
-
-/* b = a
- Caution, a `short' is assumed to be 16 bits wide. */
-
-void cmovl( a, b )
-void *a, *b;
-{
-register short *pa, *pb;
-int i;
-
-pa = (short *) a;
-pb = (short *) b;
-i = 16;
-do
- *pb++ = *pa++;
-while( --i );
-}
-
-
-void cnegl( a )
-register cmplxl *a;
-{
-
-a->r = -a->r;
-a->i = -a->i;
-}
-
-/* cabsl()
- *
- * Complex absolute value
- *
- *
- *
- * SYNOPSIS:
- *
- * long double cabsl();
- * cmplxl z;
- * long double a;
- *
- * a = cabs( &z );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy
- *
- * then
- *
- * a = sqrt( x**2 + y**2 ).
- *
- * Overflow and underflow are avoided by testing the magnitudes
- * of x and y before squaring. If either is outside half of
- * the floating point full scale range, both are rescaled.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -30,+30 30000 3.2e-17 9.2e-18
- * IEEE -10,+10 100000 2.7e-16 6.9e-17
- */
-
-
-/*
-Cephes Math Library Release 2.1: January, 1989
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-/*
-typedef struct
- {
- long double r;
- long double i;
- }cmplxl;
-*/
-
-#ifdef UNK
-#define PRECL 32
-#define MAXEXPL 16384
-#define MINEXPL -16384
-#endif
-#ifdef IBMPC
-#define PRECL 32
-#define MAXEXPL 16384
-#define MINEXPL -16384
-#endif
-#ifdef MIEEE
-#define PRECL 32
-#define MAXEXPL 16384
-#define MINEXPL -16384
-#endif
-
-
-long double cabsl( z )
-register cmplxl *z;
-{
-long double x, y, b, re, im;
-int ex, ey, e;
-
-#ifdef INFINITIES
-/* Note, cabs(INFINITY,NAN) = INFINITY. */
-if( z->r == INFINITYL || z->i == INFINITYL
- || z->r == -INFINITYL || z->i == -INFINITYL )
- return( INFINITYL );
-#endif
-
-#ifdef NANS
-if( isnanl(z->r) )
- return(z->r);
-if( isnanl(z->i) )
- return(z->i);
-#endif
-
-re = fabsl( z->r );
-im = fabsl( z->i );
-
-if( re == 0.0 )
- return( im );
-if( im == 0.0 )
- return( re );
-
-/* Get the exponents of the numbers */
-x = frexpl( re, &ex );
-y = frexpl( im, &ey );
-
-/* Check if one number is tiny compared to the other */
-e = ex - ey;
-if( e > PRECL )
- return( re );
-if( e < -PRECL )
- return( im );
-
-/* Find approximate exponent e of the geometric mean. */
-e = (ex + ey) >> 1;
-
-/* Rescale so mean is about 1 */
-x = ldexpl( re, -e );
-y = ldexpl( im, -e );
-
-/* Hypotenuse of the right triangle */
-b = sqrtl( x * x + y * y );
-
-/* Compute the exponent of the answer. */
-y = frexpl( b, &ey );
-ey = e + ey;
-
-/* Check it for overflow and underflow. */
-if( ey > MAXEXPL )
- {
- mtherr( "cabsl", OVERFLOW );
- return( INFINITYL );
- }
-if( ey < MINEXPL )
- return(0.0L);
-
-/* Undo the scaling */
-b = ldexpl( b, e );
-return( b );
-}
- /* csqrtl()
- *
- * Complex square root
- *
- *
- *
- * SYNOPSIS:
- *
- * void csqrtl();
- * cmplxl z, w;
- *
- * csqrtl( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy, r = |z|, then
- *
- * 1/2
- * Im w = [ (r - x)/2 ] ,
- *
- * Re w = y / 2 Im w.
- *
- *
- * Note that -w is also a square root of z. The root chosen
- * is always in the upper half plane.
- *
- * Because of the potential for cancellation error in r - x,
- * the result is sharpened by doing a Heron iteration
- * (see sqrt.c) in complex arithmetic.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -10,+10 25000 3.2e-17 9.6e-18
- * IEEE -10,+10 100000 3.2e-16 7.7e-17
- *
- * 2
- * Also tested by csqrt( z ) = z, and tested by arguments
- * close to the real axis.
- */
-
-
-void csqrtl( z, w )
-cmplxl *z, *w;
-{
-cmplxl q, s;
-long double x, y, r, t;
-
-x = z->r;
-y = z->i;
-
-if( y == 0.0L )
- {
- if( x < 0.0L )
- {
- w->r = 0.0L;
- w->i = sqrtl(-x);
- return;
- }
- else
- {
- w->r = sqrtl(x);
- w->i = 0.0L;
- return;
- }
- }
-
-
-if( x == 0.0L )
- {
- r = fabsl(y);
- r = sqrtl(0.5L*r);
- if( y > 0.0L )
- w->r = r;
- else
- w->r = -r;
- w->i = r;
- return;
- }
-
-/* Approximate sqrt(x^2+y^2) - x = y^2/2x - y^4/24x^3 + ... .
- * The relative error in the first term is approximately y^2/12x^2 .
- */
-if( (fabsl(y) < 2.e-4L * fabsl(x))
- && (x > 0) )
- {
- t = 0.25L*y*(y/x);
- }
-else
- {
- r = cabsl(z);
- t = 0.5L*(r - x);
- }
-
-r = sqrtl(t);
-q.i = r;
-q.r = y/(2.0L*r);
-/* Heron iteration in complex arithmetic */
-cdivl( &q, z, &s );
-caddl( &q, &s, w );
-w->r *= 0.5L;
-w->i *= 0.5L;
-
-cdivl( &q, z, &s );
-caddl( &q, &s, w );
-w->r *= 0.5L;
-w->i *= 0.5L;
-}
-
-
-long double hypotl( x, y )
-long double x, y;
-{
-cmplxl z;
-
-z.r = x;
-z.i = y;
-return( cabsl(&z) );
-}