summaryrefslogtreecommitdiff
path: root/libm/float
diff options
context:
space:
mode:
Diffstat (limited to 'libm/float')
-rw-r--r--libm/float/Makefile59
-rw-r--r--libm/float/README.txt4721
-rw-r--r--libm/float/acoshf.c97
-rw-r--r--libm/float/airyf.c377
-rw-r--r--libm/float/asinf.c186
-rw-r--r--libm/float/asinhf.c88
-rw-r--r--libm/float/atanf.c190
-rw-r--r--libm/float/atanhf.c92
-rw-r--r--libm/float/bdtrf.c247
-rw-r--r--libm/float/betaf.c122
-rw-r--r--libm/float/cbrtf.c119
-rw-r--r--libm/float/chbevlf.c86
-rw-r--r--libm/float/chdtrf.c210
-rw-r--r--libm/float/clogf.c669
-rw-r--r--libm/float/cmplxf.c407
-rw-r--r--libm/float/constf.c20
-rw-r--r--libm/float/coshf.c67
-rw-r--r--libm/float/dawsnf.c168
-rw-r--r--libm/float/ellief.c115
-rw-r--r--libm/float/ellikf.c113
-rw-r--r--libm/float/ellpef.c105
-rw-r--r--libm/float/ellpjf.c161
-rw-r--r--libm/float/ellpkf.c128
-rw-r--r--libm/float/exp10f.c115
-rw-r--r--libm/float/exp2f.c116
-rw-r--r--libm/float/expf.c122
-rw-r--r--libm/float/expnf.c207
-rw-r--r--libm/float/facf.c106
-rw-r--r--libm/float/fdtrf.c214
-rw-r--r--libm/float/floorf.c526
-rw-r--r--libm/float/fresnlf.c173
-rw-r--r--libm/float/gammaf.c423
-rw-r--r--libm/float/gdtrf.c144
-rw-r--r--libm/float/hyp2f1f.c442
-rw-r--r--libm/float/hypergf.c384
-rw-r--r--libm/float/i0f.c160
-rw-r--r--libm/float/i1f.c177
-rw-r--r--libm/float/igamf.c223
-rw-r--r--libm/float/igamif.c112
-rw-r--r--libm/float/incbetf.c424
-rw-r--r--libm/float/incbif.c197
-rw-r--r--libm/float/ivf.c114
-rw-r--r--libm/float/j0f.c228
-rw-r--r--libm/float/j0tst.c43
-rw-r--r--libm/float/j1f.c211
-rw-r--r--libm/float/jnf.c124
-rw-r--r--libm/float/jvf.c848
-rw-r--r--libm/float/k0f.c175
-rw-r--r--libm/float/k1f.c174
-rw-r--r--libm/float/knf.c252
-rw-r--r--libm/float/log10f.c129
-rw-r--r--libm/float/log2f.c129
-rw-r--r--libm/float/logf.c128
-rw-r--r--libm/float/mtherr.c99
-rw-r--r--libm/float/nantst.c54
-rw-r--r--libm/float/nbdtrf.c141
-rw-r--r--libm/float/ndtrf.c281
-rw-r--r--libm/float/ndtrif.c186
-rw-r--r--libm/float/pdtrf.c188
-rw-r--r--libm/float/polevlf.c99
-rw-r--r--libm/float/polynf.c520
-rw-r--r--libm/float/powf.c338
-rw-r--r--libm/float/powif.c156
-rw-r--r--libm/float/powtst.c41
-rw-r--r--libm/float/psif.c153
-rw-r--r--libm/float/rgammaf.c130
-rw-r--r--libm/float/setprec.c10
-rw-r--r--libm/float/shichif.c212
-rw-r--r--libm/float/sicif.c279
-rw-r--r--libm/float/sindgf.c232
-rw-r--r--libm/float/sinf.c283
-rw-r--r--libm/float/sinhf.c87
-rw-r--r--libm/float/spencef.c135
-rw-r--r--libm/float/sqrtf.c140
-rw-r--r--libm/float/stdtrf.c154
-rw-r--r--libm/float/struvef.c315
-rw-r--r--libm/float/tandgf.c206
-rw-r--r--libm/float/tanf.c192
-rw-r--r--libm/float/tanhf.c88
-rw-r--r--libm/float/ynf.c120
-rw-r--r--libm/float/zetacf.c266
-rw-r--r--libm/float/zetaf.c175
82 files changed, 0 insertions, 20647 deletions
diff --git a/libm/float/Makefile b/libm/float/Makefile
deleted file mode 100644
index 80f7aa1ff..000000000
--- a/libm/float/Makefile
+++ /dev/null
@@ -1,59 +0,0 @@
-# Makefile for uClibc's math library
-# Copyright (C) 2001 by Lineo, inc.
-#
-# This math library is derived primarily from the Cephes Math Library,
-# copyright by Stephen L. Moshier <moshier@world.std.com>
-#
-# This program is free software; you can redistribute it and/or modify it under
-# the terms of the GNU Library General Public License as published by the Free
-# Software Foundation; either version 2 of the License, or (at your option) any
-# later version.
-#
-# This program is distributed in the hope that it will be useful, but WITHOUT
-# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-# FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more
-# details.
-#
-# You should have received a copy of the GNU Library General Public License
-# along with this program; if not, write to the Free Software Foundation, Inc.,
-# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-#
-
-TOPDIR=../../
-include $(TOPDIR)Rules.mak
-
-LIBM=../libm.a
-TARGET_CC= $(TOPDIR)/extra/gcc-uClibc/$(TARGET_ARCH)-uclibc-gcc
-
-CSRC= acoshf.c airyf.c asinf.c asinhf.c atanf.c \
- atanhf.c bdtrf.c betaf.c cbrtf.c chbevlf.c chdtrf.c \
- clogf.c cmplxf.c constf.c coshf.c dawsnf.c ellief.c \
- ellikf.c ellpef.c ellpkf.c ellpjf.c expf.c exp2f.c \
- exp10f.c expnf.c facf.c fdtrf.c floorf.c fresnlf.c \
- gammaf.c gdtrf.c hypergf.c hyp2f1f.c igamf.c igamif.c \
- incbetf.c incbif.c i0f.c i1f.c ivf.c j0f.c j1f.c \
- jnf.c jvf.c k0f.c k1f.c knf.c logf.c log2f.c \
- log10f.c nbdtrf.c ndtrf.c ndtrif.c pdtrf.c polynf.c \
- powif.c powf.c psif.c rgammaf.c shichif.c sicif.c \
- sindgf.c sinf.c sinhf.c spencef.c sqrtf.c stdtrf.c \
- struvef.c tandgf.c tanf.c tanhf.c ynf.c zetaf.c \
- zetacf.c polevlf.c setprec.c mtherr.c
-COBJS=$(patsubst %.c,%.o, $(CSRC))
-OBJS=$(COBJS)
-
-all: $(OBJS) $(LIBM)
-
-$(LIBM): ar-target
-
-ar-target: $(OBJS)
- $(AR) $(ARFLAGS) $(LIBM) $(OBJS)
-
-$(COBJS): %.o : %.c
- $(TARGET_CC) $(TARGET_CFLAGS) -c $< -o $@
- $(STRIPTOOL) -x -R .note -R .comment $*.o
-
-$(OBJ): Makefile
-
-clean:
- rm -f *.[oa] *~ core
-
diff --git a/libm/float/README.txt b/libm/float/README.txt
deleted file mode 100644
index 30a10b083..000000000
--- a/libm/float/README.txt
+++ /dev/null
@@ -1,4721 +0,0 @@
-/* acoshf.c
- *
- * Inverse hyperbolic cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, acoshf();
- *
- * y = acoshf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic cosine of argument.
- *
- * If 1 <= x < 1.5, a polynomial approximation
- *
- * sqrt(z) * P(z)
- *
- * where z = x-1, is used. Otherwise,
- *
- * acosh(x) = log( x + sqrt( (x-1)(x+1) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1,3 100000 1.8e-7 3.9e-8
- * IEEE 1,2000 100000 3.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * acoshf domain |x| < 1 0.0
- *
- */
-
-/* airy.c
- *
- * Airy function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, ai, aip, bi, bip;
- * int airyf();
- *
- * airyf( x, _&ai, _&aip, _&bi, _&bip );
- *
- *
- *
- * DESCRIPTION:
- *
- * Solution of the differential equation
- *
- * y"(x) = xy.
- *
- * The function returns the two independent solutions Ai, Bi
- * and their first derivatives Ai'(x), Bi'(x).
- *
- * Evaluation is by power series summation for small x,
- * by rational minimax approximations for large x.
- *
- *
- *
- * ACCURACY:
- * Error criterion is absolute when function <= 1, relative
- * when function > 1, except * denotes relative error criterion.
- * For large negative x, the absolute error increases as x^1.5.
- * For large positive x, the relative error increases as x^1.5.
- *
- * Arithmetic domain function # trials peak rms
- * IEEE -10, 0 Ai 50000 7.0e-7 1.2e-7
- * IEEE 0, 10 Ai 50000 9.9e-6* 6.8e-7*
- * IEEE -10, 0 Ai' 50000 2.4e-6 3.5e-7
- * IEEE 0, 10 Ai' 50000 8.7e-6* 6.2e-7*
- * IEEE -10, 10 Bi 100000 2.2e-6 2.6e-7
- * IEEE -10, 10 Bi' 50000 2.2e-6 3.5e-7
- *
- */
-
-/* asinf.c
- *
- * Inverse circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, asinf();
- *
- * y = asinf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
- *
- * A polynomial of the form x + x**3 P(x**2)
- * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
- * transformed by the identity
- *
- * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1, 1 100000 2.5e-7 5.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * asinf domain |x| > 1 0.0
- *
- */
- /* acosf()
- *
- * Inverse circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, acosf();
- *
- * y = acosf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose cosine
- * is x.
- *
- * Analytically, acos(x) = pi/2 - asin(x). However if |x| is
- * near 1, there is cancellation error in subtracting asin(x)
- * from pi/2. Hence if x < -0.5,
- *
- * acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) );
- *
- * or if x > +0.5,
- *
- * acos(x) = 2.0 * asin( sqrt((1-x)/2) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1, 1 100000 1.4e-7 4.2e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * acosf domain |x| > 1 0.0
- */
-
-/* asinhf.c
- *
- * Inverse hyperbolic sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, asinhf();
- *
- * y = asinhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic sine of argument.
- *
- * If |x| < 0.5, the function is approximated by a rational
- * form x + x**3 P(x)/Q(x). Otherwise,
- *
- * asinh(x) = log( x + sqrt(1 + x*x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -3,3 100000 2.4e-7 4.1e-8
- *
- */
-
-/* atanf.c
- *
- * Inverse circular tangent
- * (arctangent)
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, atanf();
- *
- * y = atanf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose tangent
- * is x.
- *
- * Range reduction is from four intervals into the interval
- * from zero to tan( pi/8 ). A polynomial approximates
- * the function in this basic interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 100000 1.9e-7 4.1e-8
- *
- */
- /* atan2f()
- *
- * Quadrant correct inverse circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, z, atan2f();
- *
- * z = atan2f( y, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle whose tangent is y/x.
- * Define compile time symbol ANSIC = 1 for ANSI standard,
- * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
- * 0 to 2PI, args (x,y).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 100000 1.9e-7 4.1e-8
- * See atan.c.
- *
- */
-
-/* atanhf.c
- *
- * Inverse hyperbolic tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, atanhf();
- *
- * y = atanhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic tangent of argument in the range
- * MINLOGF to MAXLOGF.
- *
- * If |x| < 0.5, a polynomial approximation is used.
- * Otherwise,
- * atanh(x) = 0.5 * log( (1+x)/(1-x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1,1 100000 1.4e-7 3.1e-8
- *
- */
-
-/* bdtrf.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrf();
- *
- * y = bdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.9e-5 1.1e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrf domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- *
- */
- /* bdtrcf()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrcf();
- *
- * y = bdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.0e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrcf domain x<0, x>1, n<k 0.0
- */
- /* bdtrif()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrif();
- *
- * p = bdtrf( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 3.5e-5 3.3e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrif domain k < 0, n <= k 0.0
- * x < 0, x > 1
- *
- */
-
-/* betaf.c
- *
- * Beta function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, y, betaf();
- *
- * y = betaf( a, b );
- *
- *
- *
- * DESCRIPTION:
- *
- * - -
- * | (a) | (b)
- * beta( a, b ) = -----------.
- * -
- * | (a+b)
- *
- * For large arguments the logarithm of the function is
- * evaluated using lgam(), then exponentiated.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 10000 4.0e-5 6.0e-6
- * IEEE -20,0 10000 4.9e-3 5.4e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * betaf overflow log(beta) > MAXLOG 0.0
- * a or b <0 integer 0.0
- *
- */
-
-/* cbrtf.c
- *
- * Cube root
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cbrtf();
- *
- * y = cbrtf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the cube root of the argument, which may be negative.
- *
- * Range reduction involves determining the power of 2 of
- * the argument. A polynomial of degree 2 applied to the
- * mantissa, and multiplication by the cube root of 1, 2, or 4
- * approximates the root to within about 0.1%. Then Newton's
- * iteration is used to converge to an accurate result.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1e38 100000 7.6e-8 2.7e-8
- *
- */
-
-/* chbevlf.c
- *
- * Evaluate Chebyshev series
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * float x, y, coef[N], chebevlf();
- *
- * y = chbevlf( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the series
- *
- * N-1
- * - '
- * y = > coef[i] T (x/2)
- * - i
- * i=0
- *
- * of Chebyshev polynomials Ti at argument x/2.
- *
- * Coefficients are stored in reverse order, i.e. the zero
- * order term is last in the array. Note N is the number of
- * coefficients, not the order.
- *
- * If coefficients are for the interval a to b, x must
- * have been transformed to x -> 2(2x - b - a)/(b-a) before
- * entering the routine. This maps x from (a, b) to (-1, 1),
- * over which the Chebyshev polynomials are defined.
- *
- * If the coefficients are for the inverted interval, in
- * which (a, b) is mapped to (1/b, 1/a), the transformation
- * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
- * this becomes x -> 4a/x - 1.
- *
- *
- *
- * SPEED:
- *
- * Taking advantage of the recurrence properties of the
- * Chebyshev polynomials, the routine requires one more
- * addition per loop than evaluating a nested polynomial of
- * the same degree.
- *
- */
-
-/* chdtrf.c
- *
- * Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df, x, y, chdtrf();
- *
- * y = chdtrf( df, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the left hand tail (from 0 to x)
- * of the Chi square probability density function with
- * v degrees of freedom.
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 3.2e-5 5.0e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtrf domain x < 0 or v < 1 0.0
- */
- /* chdtrcf()
- *
- * Complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, chdtrcf();
- *
- * y = chdtrcf( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the right hand tail (from x to
- * infinity) of the Chi square probability density function
- * with v degrees of freedom:
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 2.7e-5 3.2e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtrc domain x < 0 or v < 1 0.0
- */
- /* chdtrif()
- *
- * Inverse of complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df, x, y, chdtrif();
- *
- * x = chdtrif( df, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the Chi-square argument x such that the integral
- * from x to infinity of the Chi-square density is equal
- * to the given cumulative probability y.
- *
- * This is accomplished using the inverse gamma integral
- * function and the relation
- *
- * x/2 = igami( df/2, y );
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 10000 2.2e-5 8.5e-7
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtri domain y < 0 or y > 1 0.0
- * v < 1
- *
- */
-
-/* clogf.c
- *
- * Complex natural logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * void clogf();
- * cmplxf z, w;
- *
- * clogf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns complex logarithm to the base e (2.718...) of
- * the complex argument x.
- *
- * If z = x + iy, r = sqrt( x**2 + y**2 ),
- * then
- * w = log(r) + i arctan(y/x).
- *
- * The arctangent ranges from -PI to +PI.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.9e-6 6.2e-8
- *
- * Larger relative error can be observed for z near 1 +i0.
- * In IEEE arithmetic the peak absolute error is 3.1e-7.
- *
- */
- /* cexpf()
- *
- * Complex exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * void cexpf();
- * cmplxf z, w;
- *
- * cexpf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the exponential of the complex argument z
- * into the complex result w.
- *
- * If
- * z = x + iy,
- * r = exp(x),
- *
- * then
- *
- * w = r cos y + i r sin y.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.4e-7 4.5e-8
- *
- */
- /* csinf()
- *
- * Complex circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * void csinf();
- * cmplxf z, w;
- *
- * csinf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * w = sin x cosh y + i cos x sinh y.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.9e-7 5.5e-8
- *
- */
- /* ccosf()
- *
- * Complex circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * void ccosf();
- * cmplxf z, w;
- *
- * ccosf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * w = cos x cosh y - i sin x sinh y.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.8e-7 5.5e-8
- */
- /* ctanf()
- *
- * Complex circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void ctanf();
- * cmplxf z, w;
- *
- * ctanf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * sin 2x + i sinh 2y
- * w = --------------------.
- * cos 2x + cosh 2y
- *
- * On the real axis the denominator is zero at odd multiples
- * of PI/2. The denominator is evaluated by its Taylor
- * series near these points.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 3.3e-7 5.1e-8
- */
- /* ccotf()
- *
- * Complex circular cotangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void ccotf();
- * cmplxf z, w;
- *
- * ccotf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * sin 2x - i sinh 2y
- * w = --------------------.
- * cosh 2y - cos 2x
- *
- * On the real axis, the denominator has zeros at even
- * multiples of PI/2. Near these points it is evaluated
- * by a Taylor series.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 3.6e-7 5.7e-8
- * Also tested by ctan * ccot = 1 + i0.
- */
- /* casinf()
- *
- * Complex circular arc sine
- *
- *
- *
- * SYNOPSIS:
- *
- * void casinf();
- * cmplxf z, w;
- *
- * casinf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Inverse complex sine:
- *
- * 2
- * w = -i clog( iz + csqrt( 1 - z ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.1e-5 1.5e-6
- * Larger relative error can be observed for z near zero.
- *
- */
- /* cacosf()
- *
- * Complex circular arc cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * void cacosf();
- * cmplxf z, w;
- *
- * cacosf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * w = arccos z = PI/2 - arcsin z.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 9.2e-6 1.2e-6
- *
- */
- /* catan()
- *
- * Complex circular arc tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void catan();
- * cmplxf z, w;
- *
- * catan( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- * 1 ( 2x )
- * Re w = - arctan(-----------) + k PI
- * 2 ( 2 2)
- * (1 - x - y )
- *
- * ( 2 2)
- * 1 (x + (y+1) )
- * Im w = - log(------------)
- * 4 ( 2 2)
- * (x + (y-1) )
- *
- * Where k is an arbitrary integer.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 2.3e-6 5.2e-8
- *
- */
-
-/* cmplxf.c
- *
- * Complex number arithmetic
- *
- *
- *
- * SYNOPSIS:
- *
- * typedef struct {
- * float r; real part
- * float i; imaginary part
- * }cmplxf;
- *
- * cmplxf *a, *b, *c;
- *
- * caddf( a, b, c ); c = b + a
- * csubf( a, b, c ); c = b - a
- * cmulf( a, b, c ); c = b * a
- * cdivf( a, b, c ); c = b / a
- * cnegf( c ); c = -c
- * cmovf( b, c ); c = b
- *
- *
- *
- * DESCRIPTION:
- *
- * Addition:
- * c.r = b.r + a.r
- * c.i = b.i + a.i
- *
- * Subtraction:
- * c.r = b.r - a.r
- * c.i = b.i - a.i
- *
- * Multiplication:
- * c.r = b.r * a.r - b.i * a.i
- * c.i = b.r * a.i + b.i * a.r
- *
- * Division:
- * d = a.r * a.r + a.i * a.i
- * c.r = (b.r * a.r + b.i * a.i)/d
- * c.i = (b.i * a.r - b.r * a.i)/d
- * ACCURACY:
- *
- * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
- * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had
- * peak relative error 8.3e-17, rms 2.1e-17.
- *
- * Tests in the rectangle {-10,+10}:
- * Relative error:
- * arithmetic function # trials peak rms
- * IEEE cadd 30000 5.9e-8 2.6e-8
- * IEEE csub 30000 6.0e-8 2.6e-8
- * IEEE cmul 30000 1.1e-7 3.7e-8
- * IEEE cdiv 30000 2.1e-7 5.7e-8
- */
-
-/* cabsf()
- *
- * Complex absolute value
- *
- *
- *
- * SYNOPSIS:
- *
- * float cabsf();
- * cmplxf z;
- * float a;
- *
- * a = cabsf( &z );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy
- *
- * then
- *
- * a = sqrt( x**2 + y**2 ).
- *
- * Overflow and underflow are avoided by testing the magnitudes
- * of x and y before squaring. If either is outside half of
- * the floating point full scale range, both are rescaled.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.2e-7 3.4e-8
- */
- /* csqrtf()
- *
- * Complex square root
- *
- *
- *
- * SYNOPSIS:
- *
- * void csqrtf();
- * cmplxf z, w;
- *
- * csqrtf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy, r = |z|, then
- *
- * 1/2
- * Im w = [ (r - x)/2 ] ,
- *
- * Re w = y / 2 Im w.
- *
- *
- * Note that -w is also a square root of z. The solution
- * reported is always in the upper half plane.
- *
- * Because of the potential for cancellation error in r - x,
- * the result is sharpened by doing a Heron iteration
- * (see sqrt.c) in complex arithmetic.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 100000 1.8e-7 4.2e-8
- *
- */
-
-/* coshf.c
- *
- * Hyperbolic cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, coshf();
- *
- * y = coshf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic cosine of argument in the range MINLOGF to
- * MAXLOGF.
- *
- * cosh(x) = ( exp(x) + exp(-x) )/2.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-MAXLOGF 100000 1.2e-7 2.8e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * coshf overflow |x| > MAXLOGF MAXNUMF
- *
- *
- */
-
-/* dawsnf.c
- *
- * Dawson's Integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, dawsnf();
- *
- * y = dawsnf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- * x
- * -
- * 2 | | 2
- * dawsn(x) = exp( -x ) | exp( t ) dt
- * | |
- * -
- * 0
- *
- * Three different rational approximations are employed, for
- * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,10 50000 4.4e-7 6.3e-8
- *
- *
- */
-
-/* ellief.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellief();
- *
- * y = ellief( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 4.5e-7 7.4e-8
- *
- *
- */
-
-/* ellikf.c
- *
- * Incomplete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellikf();
- *
- * y = ellikf( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * phi
- * -
- * | |
- * | dt
- * F(phi\m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 2.9e-7 5.8e-8
- *
- *
- */
-
-/* ellpef.c
- *
- * Complete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float m1, y, ellpef();
- *
- * y = ellpef( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * pi/2
- * -
- * | | 2
- * E(m) = | sqrt( 1 - m sin t ) dt
- * | |
- * -
- * 0
- *
- * Where m = 1 - m1, using the approximation
- *
- * P(x) - x log x Q(x).
- *
- * Though there are no singularities, the argument m1 is used
- * rather than m for compatibility with ellpk().
- *
- * E(1) = 1; E(0) = pi/2.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 1 30000 1.1e-7 3.9e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpef domain x<0, x>1 0.0
- *
- */
-
-/* ellpjf.c
- *
- * Jacobian Elliptic Functions
- *
- *
- *
- * SYNOPSIS:
- *
- * float u, m, sn, cn, dn, phi;
- * int ellpj();
- *
- * ellpj( u, m, _&sn, _&cn, _&dn, _&phi );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
- * and dn(u|m) of parameter m between 0 and 1, and real
- * argument u.
- *
- * These functions are periodic, with quarter-period on the
- * real axis equal to the complete elliptic integral
- * ellpk(1.0-m).
- *
- * Relation to incomplete elliptic integral:
- * If u = ellik(phi,m), then sn(u|m) = sin(phi),
- * and cn(u|m) = cos(phi). Phi is called the amplitude of u.
- *
- * Computation is by means of the arithmetic-geometric mean
- * algorithm, except when m is within 1e-9 of 0 or 1. In the
- * latter case with m close to 1, the approximation applies
- * only for phi < pi/2.
- *
- * ACCURACY:
- *
- * Tested at random points with u between 0 and 10, m between
- * 0 and 1.
- *
- * Absolute error (* = relative error):
- * arithmetic function # trials peak rms
- * IEEE sn 10000 1.7e-6 2.2e-7
- * IEEE cn 10000 1.6e-6 2.2e-7
- * IEEE dn 10000 1.4e-3 1.9e-5
- * IEEE phi 10000 3.9e-7* 6.7e-8*
- *
- * Peak error observed in consistency check using addition
- * theorem for sn(u+v) was 4e-16 (absolute). Also tested by
- * the above relation to the incomplete elliptic integral.
- * Accuracy deteriorates when u is large.
- *
- */
-
-/* ellpkf.c
- *
- * Complete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float m1, y, ellpkf();
- *
- * y = ellpkf( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * pi/2
- * -
- * | |
- * | dt
- * K(m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * where m = 1 - m1, using the approximation
- *
- * P(x) - log x Q(x).
- *
- * The argument m1 is used rather than m so that the logarithmic
- * singularity at m = 1 will be shifted to the origin; this
- * preserves maximum accuracy.
- *
- * K(0) = pi/2.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1 30000 1.3e-7 3.4e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpkf domain x<0, x>1 0.0
- *
- */
-
-/* exp10f.c
- *
- * Base 10 exponential function
- * (Common antilogarithm)
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, exp10f();
- *
- * y = exp10f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns 10 raised to the x power.
- *
- * Range reduction is accomplished by expressing the argument
- * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
- * A polynomial approximates 10**f.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -38,+38 100000 9.8e-8 2.8e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp10 underflow x < -MAXL10 0.0
- * exp10 overflow x > MAXL10 MAXNUM
- *
- * IEEE single arithmetic: MAXL10 = 38.230809449325611792.
- *
- */
-
-/* exp2f.c
- *
- * Base 2 exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, exp2f();
- *
- * y = exp2f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns 2 raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- * x k f
- * 2 = 2 2.
- *
- * A polynomial approximates 2**x in the basic range [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -127,+127 100000 1.7e-7 2.8e-8
- *
- *
- * See exp.c for comments on error amplification.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp underflow x < -MAXL2 0.0
- * exp overflow x > MAXL2 MAXNUMF
- *
- * For IEEE arithmetic, MAXL2 = 127.
- */
-
-/* expf.c
- *
- * Exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, expf();
- *
- * y = expf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * A polynomial is used to approximate exp(f)
- * in the basic range [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +- MAXLOG 100000 1.7e-7 2.8e-8
- *
- *
- * Error amplification in the exponential function can be
- * a serious matter. The error propagation involves
- * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- * which shows that a 1 lsb error in representing X produces
- * a relative error of X times 1 lsb in the function.
- * While the routine gives an accurate result for arguments
- * that are exactly represented by a double precision
- * computer number, the result contains amplified roundoff
- * error for large arguments not exactly represented.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * expf underflow x < MINLOGF 0.0
- * expf overflow x > MAXLOGF MAXNUMF
- *
- */
-
-/* expnf.c
- *
- * Exponential integral En
- *
- *
- *
- * SYNOPSIS:
- *
- * int n;
- * float x, y, expnf();
- *
- * y = expnf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the exponential integral
- *
- * inf.
- * -
- * | | -xt
- * | e
- * E (x) = | ---- dt.
- * n | n
- * | | t
- * -
- * 1
- *
- *
- * Both n and x must be nonnegative.
- *
- * The routine employs either a power series, a continued
- * fraction, or an asymptotic formula depending on the
- * relative values of n and x.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 10000 5.6e-7 1.2e-7
- *
- */
-
-/* facf.c
- *
- * Factorial function
- *
- *
- *
- * SYNOPSIS:
- *
- * float y, facf();
- * int i;
- *
- * y = facf( i );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns factorial of i = 1 * 2 * 3 * ... * i.
- * fac(0) = 1.0.
- *
- * Due to machine arithmetic bounds the largest value of
- * i accepted is 33 in single precision arithmetic.
- * Greater values, or negative ones,
- * produce an error message and return MAXNUM.
- *
- *
- *
- * ACCURACY:
- *
- * For i < 34 the values are simply tabulated, and have
- * full machine accuracy.
- *
- */
-
-/* fdtrf.c
- *
- * F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * float x, y, fdtrf();
- *
- * y = fdtrf( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from zero to x under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density). This is the density
- * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
- * variables having Chi square distributions with df1
- * and df2 degrees of freedom, respectively.
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
- *
- *
- * The arguments a and b are greater than zero, and x
- * x is nonnegative.
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 2.2e-5 1.1e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrf domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtrcf()
- *
- * Complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * float x, y, fdtrcf();
- *
- * y = fdtrcf( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from x to infinity under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density).
- *
- *
- * inf.
- * -
- * 1 | | a-1 b-1
- * 1-P(x) = ------ | t (1-t) dt
- * B(a,b) | |
- * -
- * x
- *
- * (See fdtr.c.)
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 7.3e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrcf domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtrif()
- *
- * Inverse of complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df1, df2, x, y, fdtrif();
- *
- * x = fdtrif( df1, df2, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the F density argument x such that the integral
- * from x to infinity of the F density is equal to the
- * given probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relations
- *
- * z = incbi( df2/2, df1/2, y )
- * x = df2 (1-z) / (df1 z).
- *
- * Note: the following relations hold for the inverse of
- * the uncomplemented F distribution:
- *
- * z = incbi( df1/2, df2/2, y )
- * x = df2 z / (df1 (1-z)).
- *
- *
- *
- * ACCURACY:
- *
- * arithmetic domain # trials peak rms
- * Absolute error:
- * IEEE 0,100 5000 4.0e-5 3.2e-6
- * Relative error:
- * IEEE 0,100 5000 1.2e-3 1.8e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrif domain y <= 0 or y > 1 0.0
- * v < 1
- *
- */
-
-/* ceilf()
- * floorf()
- * frexpf()
- * ldexpf()
- *
- * Single precision floating point numeric utilities
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y;
- * float ceilf(), floorf(), frexpf(), ldexpf();
- * int expnt, n;
- *
- * y = floorf(x);
- * y = ceilf(x);
- * y = frexpf( x, &expnt );
- * y = ldexpf( x, n );
- *
- *
- *
- * DESCRIPTION:
- *
- * All four routines return a single precision floating point
- * result.
- *
- * sfloor() returns the largest integer less than or equal to x.
- * It truncates toward minus infinity.
- *
- * sceil() returns the smallest integer greater than or equal
- * to x. It truncates toward plus infinity.
- *
- * sfrexp() extracts the exponent from x. It returns an integer
- * power of two to expnt and the significand between 0.5 and 1
- * to y. Thus x = y * 2**expn.
- *
- * sldexp() multiplies x by 2**n.
- *
- * These functions are part of the standard C run time library
- * for many but not all C compilers. The ones supplied are
- * written in C for either DEC or IEEE arithmetic. They should
- * be used only if your compiler library does not already have
- * them.
- *
- * The IEEE versions assume that denormal numbers are implemented
- * in the arithmetic. Some modifications will be required if
- * the arithmetic has abrupt rather than gradual underflow.
- */
-
-/* fresnlf.c
- *
- * Fresnel integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, S, C;
- * void fresnlf();
- *
- * fresnlf( x, _&S, _&C );
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the Fresnel integrals
- *
- * x
- * -
- * | |
- * C(x) = | cos(pi/2 t**2) dt,
- * | |
- * -
- * 0
- *
- * x
- * -
- * | |
- * S(x) = | sin(pi/2 t**2) dt.
- * | |
- * -
- * 0
- *
- *
- * The integrals are evaluated by power series for small x.
- * For x >= 1 auxiliary functions f(x) and g(x) are employed
- * such that
- *
- * C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
- * S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
- *
- *
- *
- * ACCURACY:
- *
- * Relative error.
- *
- * Arithmetic function domain # trials peak rms
- * IEEE S(x) 0, 10 30000 1.1e-6 1.9e-7
- * IEEE C(x) 0, 10 30000 1.1e-6 2.0e-7
- */
-
-/* gammaf.c
- *
- * Gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, gammaf();
- * extern int sgngamf;
- *
- * y = gammaf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns gamma function of the argument. The result is
- * correctly signed, and the sign (+1 or -1) is also
- * returned in a global (extern) variable named sgngamf.
- * This same variable is also filled in by the logarithmic
- * gamma function lgam().
- *
- * Arguments between 0 and 10 are reduced by recurrence and the
- * function is approximated by a polynomial function covering
- * the interval (2,3). Large arguments are handled by Stirling's
- * formula. Negative arguments are made positive using
- * a reflection formula.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,-33 100,000 5.7e-7 1.0e-7
- * IEEE -33,0 100,000 6.1e-7 1.2e-7
- *
- *
- */
-/* lgamf()
- *
- * Natural logarithm of gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, lgamf();
- * extern int sgngamf;
- *
- * y = lgamf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of the absolute
- * value of the gamma function of the argument.
- * The sign (+1 or -1) of the gamma function is returned in a
- * global (extern) variable named sgngamf.
- *
- * For arguments greater than 6.5, the logarithm of the gamma
- * function is approximated by the logarithmic version of
- * Stirling's formula. Arguments between 0 and +6.5 are reduced by
- * by recurrence to the interval [.75,1.25] or [1.5,2.5] of a rational
- * approximation. The cosecant reflection formula is employed for
- * arguments less than zero.
- *
- * Arguments greater than MAXLGM = 2.035093e36 return MAXNUM and an
- * error message.
- *
- *
- *
- * ACCURACY:
- *
- *
- *
- * arithmetic domain # trials peak rms
- * IEEE -100,+100 500,000 7.4e-7 6.8e-8
- * The error criterion was relative when the function magnitude
- * was greater than one but absolute when it was less than one.
- * The routine has low relative error for positive arguments.
- *
- * The following test used the relative error criterion.
- * IEEE -2, +3 100000 4.0e-7 5.6e-8
- *
- */
-
-/* gdtrf.c
- *
- * Gamma distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, gdtrf();
- *
- * y = gdtrf( a, b, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the integral from zero to x of the gamma probability
- * density function:
- *
- *
- * x
- * b -
- * a | | b-1 -at
- * y = ----- | t e dt
- * - | |
- * | (b) -
- * 0
- *
- * The incomplete gamma integral is used, according to the
- * relation
- *
- * y = igam( b, ax ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 5.8e-5 3.0e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * gdtrf domain x < 0 0.0
- *
- */
- /* gdtrcf.c
- *
- * Complemented gamma distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, gdtrcf();
- *
- * y = gdtrcf( a, b, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the integral from x to infinity of the gamma
- * probability density function:
- *
- *
- * inf.
- * b -
- * a | | b-1 -at
- * y = ----- | t e dt
- * - | |
- * | (b) -
- * x
- *
- * The incomplete gamma integral is used, according to the
- * relation
- *
- * y = igamc( b, ax ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 9.1e-5 1.5e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * gdtrcf domain x < 0 0.0
- *
- */
-
-/* hyp2f1f.c
- *
- * Gauss hypergeometric function F
- * 2 1
- *
- *
- * SYNOPSIS:
- *
- * float a, b, c, x, y, hyp2f1f();
- *
- * y = hyp2f1f( a, b, c, x );
- *
- *
- * DESCRIPTION:
- *
- *
- * hyp2f1( a, b, c, x ) = F ( a, b; c; x )
- * 2 1
- *
- * inf.
- * - a(a+1)...(a+k) b(b+1)...(b+k) k+1
- * = 1 + > ----------------------------- x .
- * - c(c+1)...(c+k) (k+1)!
- * k = 0
- *
- * Cases addressed are
- * Tests and escapes for negative integer a, b, or c
- * Linear transformation if c - a or c - b negative integer
- * Special case c = a or c = b
- * Linear transformation for x near +1
- * Transformation for x < -0.5
- * Psi function expansion if x > 0.5 and c - a - b integer
- * Conditionally, a recurrence on c to make c-a-b > 0
- *
- * |x| > 1 is rejected.
- *
- * The parameters a, b, c are considered to be integer
- * valued if they are within 1.0e-6 of the nearest integer.
- *
- * ACCURACY:
- *
- * Relative error (-1 < x < 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,3 30000 5.8e-4 4.3e-6
- */
-
-/* hypergf.c
- *
- * Confluent hypergeometric function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, hypergf();
- *
- * y = hypergf( a, b, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the confluent hypergeometric function
- *
- * 1 2
- * a x a(a+1) x
- * F ( a,b;x ) = 1 + ---- + --------- + ...
- * 1 1 b 1! b(b+1) 2!
- *
- * Many higher transcendental functions are special cases of
- * this power series.
- *
- * As is evident from the formula, b must not be a negative
- * integer or zero unless a is an integer with 0 >= a > b.
- *
- * The routine attempts both a direct summation of the series
- * and an asymptotic expansion. In each case error due to
- * roundoff, cancellation, and nonconvergence is estimated.
- * The result with smaller estimated error is returned.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points (a, b, x), all three variables
- * ranging from 0 to 30.
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,5 10000 6.6e-7 1.3e-7
- * IEEE 0,30 30000 1.1e-5 6.5e-7
- *
- * Larger errors can be observed when b is near a negative
- * integer or zero. Certain combinations of arguments yield
- * serious cancellation error in the power series summation
- * and also are not in the region of near convergence of the
- * asymptotic series. An error message is printed if the
- * self-estimated relative error is greater than 1.0e-3.
- *
- */
-
-/* i0f.c
- *
- * Modified Bessel function of order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i0();
- *
- * y = i0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order zero of the
- * argument.
- *
- * The function is defined as i0(x) = j0( ix ).
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 100000 4.0e-7 7.9e-8
- *
- */
- /* i0ef.c
- *
- * Modified Bessel function of order zero,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i0ef();
- *
- * y = i0ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of order zero of the argument.
- *
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 100000 3.7e-7 7.0e-8
- * See i0f().
- *
- */
-
-/* i1f.c
- *
- * Modified Bessel function of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i1f();
- *
- * y = i1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order one of the
- * argument.
- *
- * The function is defined as i1(x) = -i j1( ix ).
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 100000 1.5e-6 1.6e-7
- *
- *
- */
- /* i1ef.c
- *
- * Modified Bessel function of order one,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i1ef();
- *
- * y = i1ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of order one of the argument.
- *
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
- * See i1().
- *
- */
-
-/* igamf.c
- *
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, x, y, igamf();
- *
- * y = igamf( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 20000 7.8e-6 5.9e-7
- *
- */
- /* igamcf()
- *
- * Complemented incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, x, y, igamcf();
- *
- * y = igamcf( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 30000 7.8e-6 5.9e-7
- *
- */
-
-/* igamif()
- *
- * Inverse of complemented imcomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, x, y, igamif();
- *
- * x = igamif( a, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * igamc( a, x ) = y.
- *
- * Starting with the approximate value
- *
- * 3
- * x = a t
- *
- * where
- *
- * t = 1 - d - ndtri(y) sqrt(d)
- *
- * and
- *
- * d = 1/9a,
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of igamc(a,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Tested for a ranging from 0 to 100 and x from 0 to 1.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.0e-5 1.5e-6
- *
- */
-
-/* incbetf.c
- *
- * Incomplete beta integral
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, incbetf();
- *
- * y = incbetf( a, b, x );
- *
- *
- * DESCRIPTION:
- *
- * Returns incomplete beta integral of the arguments, evaluated
- * from zero to x. The function is defined as
- *
- * x
- * - -
- * | (a+b) | | a-1 b-1
- * ----------- | t (1-t) dt.
- * - - | |
- * | (a) | (b) -
- * 0
- *
- * The domain of definition is 0 <= x <= 1. In this
- * implementation a and b are restricted to positive values.
- * The integral from x to 1 may be obtained by the symmetry
- * relation
- *
- * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
- *
- * The integral is evaluated by a continued fraction expansion.
- * If a < 1, the function calls itself recursively after a
- * transformation to increase a to a+1.
- *
- * ACCURACY:
- *
- * Tested at random points (a,b,x) with a and b in the indicated
- * interval and x between 0 and 1.
- *
- * arithmetic domain # trials peak rms
- * Relative error:
- * IEEE 0,30 10000 3.7e-5 5.1e-6
- * IEEE 0,100 10000 1.7e-4 2.5e-5
- * The useful domain for relative error is limited by underflow
- * of the single precision exponential function.
- * Absolute error:
- * IEEE 0,30 100000 2.2e-5 9.6e-7
- * IEEE 0,100 10000 6.5e-5 3.7e-6
- *
- * Larger errors may occur for extreme ratios of a and b.
- *
- * ERROR MESSAGES:
- * message condition value returned
- * incbetf domain x<0, x>1 0.0
- */
-
-/* incbif()
- *
- * Inverse of imcomplete beta integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, incbif();
- *
- * x = incbif( a, b, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * incbet( a, b, x ) = y.
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of incbet(a,b,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * x a,b
- * arithmetic domain domain # trials peak rms
- * IEEE 0,1 0,100 5000 2.8e-4 8.3e-6
- *
- * Overflow and larger errors may occur for one of a or b near zero
- * and the other large.
- */
-
-/* ivf.c
- *
- * Modified Bessel function of noninteger order
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, ivf();
- *
- * y = ivf( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order v of the
- * argument. If x is negative, v must be integer valued.
- *
- * The function is defined as Iv(x) = Jv( ix ). It is
- * here computed in terms of the confluent hypergeometric
- * function, according to the formula
- *
- * v -x
- * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)
- *
- * If v is a negative integer, then v is replaced by -v.
- *
- *
- * ACCURACY:
- *
- * Tested at random points (v, x), with v between 0 and
- * 30, x between 0 and 28.
- * arithmetic domain # trials peak rms
- * Relative error:
- * IEEE 0,15 3000 4.7e-6 5.4e-7
- * Absolute error (relative when function > 1)
- * IEEE 0,30 5000 8.5e-6 1.3e-6
- *
- * Accuracy is diminished if v is near a negative integer.
- * The useful domain for relative error is limited by overflow
- * of the single precision exponential function.
- *
- * See also hyperg.c.
- *
- */
-
-/* j0f.c
- *
- * Bessel function of order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, j0f();
- *
- * y = j0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order zero of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval the following polynomial
- * approximation is used:
- *
- *
- * 2 2 2
- * (w - r ) (w - r ) (w - r ) P(w)
- * 1 2 3
- *
- * 2
- * where w = x and the three r's are zeros of the function.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
- *
- * j0(x) = Modulus(x) cos( Phase(x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
- *
- */
- /* y0f.c
- *
- * Bessel function of the second kind, order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, y0f();
- *
- * y = y0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of the second kind, of order
- * zero, of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval a rational approximation
- * R(x) is employed to compute
- *
- * 2 2 2
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
- * 1 2 3
- *
- * Thus a call to j0() is required. The three zeros are removed
- * from R(x) to improve its numerical stability.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
- *
- * y0(x) = Modulus(x) sin( Phase(x) ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error, when y0(x) < 1; else relative error:
- *
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
- *
- */
-
-/* j1f.c
- *
- * Bessel function of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, j1f();
- *
- * y = j1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order one of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval a polynomial approximation
- * 2
- * (w - r ) x P(w)
- * 1
- * 2
- * is used, where w = x and r is the first zero of the function.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
- *
- * j0(x) = Modulus(x) cos( Phase(x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 1.2e-7 2.5e-8
- * IEEE 2, 32 100000 2.0e-7 5.3e-8
- *
- *
- */
- /* y1.c
- *
- * Bessel function of second kind of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, y1();
- *
- * y = y1( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of the second kind of order one
- * of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval a rational approximation
- * R(x) is employed to compute
- *
- * 2
- * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
- * 1
- *
- * Thus a call to j1() is required.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
- *
- * y0(x) = Modulus(x) sin( Phase(x) ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 2.2e-7 4.6e-8
- * IEEE 2, 32 100000 1.9e-7 5.3e-8
- *
- * (error criterion relative when |y1| > 1).
- *
- */
-
-/* jnf.c
- *
- * Bessel function of integer order
- *
- *
- *
- * SYNOPSIS:
- *
- * int n;
- * float x, y, jnf();
- *
- * y = jnf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order n, where n is a
- * (possibly negative) integer.
- *
- * The ratio of jn(x) to j0(x) is computed by backward
- * recurrence. First the ratio jn/jn-1 is found by a
- * continued fraction expansion. Then the recurrence
- * relating successive orders is applied until j0 or j1 is
- * reached.
- *
- * If n = 0 or 1 the routine for j0 or j1 is called
- * directly.
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic range # trials peak rms
- * IEEE 0, 15 30000 3.6e-7 3.6e-8
- *
- *
- * Not suitable for large n or x. Use jvf() instead.
- *
- */
-
-/* jvf.c
- *
- * Bessel function of noninteger order
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, jvf();
- *
- * y = jvf( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order v of the argument,
- * where v is real. Negative x is allowed if v is an integer.
- *
- * Several expansions are included: the ascending power
- * series, the Hankel expansion, and two transitional
- * expansions for large v. If v is not too large, it
- * is reduced by recurrence to a region of best accuracy.
- *
- * The single precision routine accepts negative v, but with
- * reduced accuracy.
- *
- *
- *
- * ACCURACY:
- * Results for integer v are indicated by *.
- * Error criterion is absolute, except relative when |jv()| > 1.
- *
- * arithmetic domain # trials peak rms
- * v x
- * IEEE 0,125 0,125 30000 2.0e-6 2.0e-7
- * IEEE -17,0 0,125 30000 1.1e-5 4.0e-7
- * IEEE -100,0 0,125 3000 1.5e-4 7.8e-6
- */
-
-/* k0f.c
- *
- * Modified Bessel function, third kind, order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k0f();
- *
- * y = k0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of the third kind
- * of order zero of the argument.
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at 2000 random points between 0 and 8. Peak absolute
- * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 7.8e-7 8.5e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * K0 domain x <= 0 MAXNUM
- *
- */
- /* k0ef()
- *
- * Modified Bessel function, third kind, order zero,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k0ef();
- *
- * y = k0ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of the third kind of order zero of the argument.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 8.1e-7 7.8e-8
- * See k0().
- *
- */
-
-/* k1f.c
- *
- * Modified Bessel function, third kind, order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k1f();
- *
- * y = k1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the modified Bessel function of the third kind
- * of order one of the argument.
- *
- * The range is partitioned into the two intervals [0,2] and
- * (2, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * k1 domain x <= 0 MAXNUM
- *
- */
- /* k1ef.c
- *
- * Modified Bessel function, third kind, order one,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k1ef();
- *
- * y = k1ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of the third kind of order one of the argument:
- *
- * k1e(x) = exp(x) * k1(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
- * See k1().
- *
- */
-
-/* knf.c
- *
- * Modified Bessel function, third kind, integer order
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, knf();
- * int n;
- *
- * y = knf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of the third kind
- * of order n of the argument.
- *
- * The range is partitioned into the two intervals [0,9.55] and
- * (9.55, infinity). An ascending power series is used in the
- * low range, and an asymptotic expansion in the high range.
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error, relative when function > 1:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 10000 2.0e-4 3.8e-6
- *
- * Error is high only near the crossover point x = 9.55
- * between the two expansions used.
- */
-
-/* log10f.c
- *
- * Common logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, log10f();
- *
- * y = log10f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns logarithm to the base 10 of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. The logarithm of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 100000 1.3e-7 3.4e-8
- * IEEE 0, MAXNUMF 100000 1.3e-7 2.6e-8
- *
- * In the tests over the interval [0, MAXNUM], the logarithms
- * of the random arguments were uniformly distributed over
- * [-MAXL10, MAXL10].
- *
- * ERROR MESSAGES:
- *
- * log10f singularity: x = 0; returns -MAXL10
- * log10f domain: x < 0; returns -MAXL10
- * MAXL10 = 38.230809449325611792
- */
-
-/* log2f.c
- *
- * Base 2 logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, log2f();
- *
- * y = log2f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base 2 logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the base e
- * logarithm of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
- *
- * Otherwise, setting z = 2(x-1)/x+1),
- *
- * log(x) = z + z**3 P(z)/Q(z).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE exp(+-88) 100000 1.1e-7 2.4e-8
- * IEEE 0.5, 2.0 100000 1.1e-7 3.0e-8
- *
- * In the tests over the interval [exp(+-88)], the logarithms
- * of the random arguments were uniformly distributed.
- *
- * ERROR MESSAGES:
- *
- * log singularity: x = 0; returns MINLOGF/log(2)
- * log domain: x < 0; returns MINLOGF/log(2)
- */
-
-/* logf.c
- *
- * Natural logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, logf();
- *
- * y = logf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the logarithm
- * of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 100000 7.6e-8 2.7e-8
- * IEEE 1, MAXNUMF 100000 2.6e-8
- *
- * In the tests over the interval [1, MAXNUM], the logarithms
- * of the random arguments were uniformly distributed over
- * [0, MAXLOGF].
- *
- * ERROR MESSAGES:
- *
- * logf singularity: x = 0; returns MINLOG
- * logf domain: x < 0; returns MINLOG
- */
-
-/* mtherr.c
- *
- * Library common error handling routine
- *
- *
- *
- * SYNOPSIS:
- *
- * char *fctnam;
- * int code;
- * void mtherr();
- *
- * mtherr( fctnam, code );
- *
- *
- *
- * DESCRIPTION:
- *
- * This routine may be called to report one of the following
- * error conditions (in the include file math.h).
- *
- * Mnemonic Value Significance
- *
- * DOMAIN 1 argument domain error
- * SING 2 function singularity
- * OVERFLOW 3 overflow range error
- * UNDERFLOW 4 underflow range error
- * TLOSS 5 total loss of precision
- * PLOSS 6 partial loss of precision
- * EDOM 33 Unix domain error code
- * ERANGE 34 Unix range error code
- *
- * The default version of the file prints the function name,
- * passed to it by the pointer fctnam, followed by the
- * error condition. The display is directed to the standard
- * output device. The routine then returns to the calling
- * program. Users may wish to modify the program to abort by
- * calling exit() under severe error conditions such as domain
- * errors.
- *
- * Since all error conditions pass control to this function,
- * the display may be easily changed, eliminated, or directed
- * to an error logging device.
- *
- * SEE ALSO:
- *
- * math.h
- *
- */
-
-/* nbdtrf.c
- *
- * Negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, nbdtrf();
- *
- * y = nbdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the negative
- * binomial distribution:
- *
- * k
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * In a sequence of Bernoulli trials, this is the probability
- * that k or fewer failures precede the nth success.
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.5e-4 1.9e-5
- *
- */
- /* nbdtrcf.c
- *
- * Complemented negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, nbdtrcf();
- *
- * y = nbdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 to infinity of the negative
- * binomial distribution:
- *
- * inf
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.4e-4 2.0e-5
- *
- */
-
-/* ndtrf.c
- *
- * Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, ndtrf();
- *
- * y = ndtrf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the Gaussian probability density
- * function, integrated from minus infinity to x:
- *
- * x
- * -
- * 1 | | 2
- * ndtr(x) = --------- | exp( - t /2 ) dt
- * sqrt(2pi) | |
- * -
- * -inf.
- *
- * = ( 1 + erf(z) ) / 2
- * = erfc(z) / 2
- *
- * where z = x/sqrt(2). Computation is via the functions
- * erf and erfc.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -13,0 50000 1.5e-5 2.6e-6
- *
- *
- * ERROR MESSAGES:
- *
- * See erfcf().
- *
- */
- /* erff.c
- *
- * Error function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, erff();
- *
- * y = erff( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The integral is
- *
- * x
- * -
- * 2 | | 2
- * erf(x) = -------- | exp( - t ) dt.
- * sqrt(pi) | |
- * -
- * 0
- *
- * The magnitude of x is limited to 9.231948545 for DEC
- * arithmetic; 1 or -1 is returned outside this range.
- *
- * For 0 <= |x| < 1, erf(x) = x * P(x**2); otherwise
- * erf(x) = 1 - erfc(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -9.3,9.3 50000 1.7e-7 2.8e-8
- *
- */
- /* erfcf.c
- *
- * Complementary error function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, erfcf();
- *
- * y = erfcf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * 1 - erf(x) =
- *
- * inf.
- * -
- * 2 | | 2
- * erfc(x) = -------- | exp( - t ) dt
- * sqrt(pi) | |
- * -
- * x
- *
- *
- * For small x, erfc(x) = 1 - erf(x); otherwise polynomial
- * approximations 1/x P(1/x**2) are computed.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -9.3,9.3 50000 3.9e-6 7.2e-7
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * erfcf underflow x**2 > MAXLOGF 0.0
- *
- *
- */
-
-/* ndtrif.c
- *
- * Inverse of Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, ndtrif();
- *
- * x = ndtrif( y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the argument, x, for which the area under the
- * Gaussian probability density function (integrated from
- * minus infinity to x) is equal to y.
- *
- *
- * For small arguments 0 < y < exp(-2), the program computes
- * z = sqrt( -2.0 * log(y) ); then the approximation is
- * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
- * There are two rational functions P/Q, one for 0 < y < exp(-32)
- * and the other for y up to exp(-2). For larger arguments,
- * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1e-38, 1 30000 3.6e-7 5.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ndtrif domain x <= 0 -MAXNUM
- * ndtrif domain x >= 1 MAXNUM
- *
- */
-
-/* pdtrf.c
- *
- * Poisson distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k;
- * float m, y, pdtrf();
- *
- * y = pdtrf( k, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the first k terms of the Poisson
- * distribution:
- *
- * k j
- * -- -m m
- * > e --
- * -- j!
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * gamma integral is employed, according to the relation
- *
- * y = pdtr( k, m ) = igamc( k+1, m ).
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 6.9e-5 8.0e-6
- *
- */
- /* pdtrcf()
- *
- * Complemented poisson distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k;
- * float m, y, pdtrcf();
- *
- * y = pdtrcf( k, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 to infinity of the Poisson
- * distribution:
- *
- * inf. j
- * -- -m m
- * > e --
- * -- j!
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * gamma integral is employed, according to the formula
- *
- * y = pdtrc( k, m ) = igam( k+1, m ).
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 8.4e-5 1.2e-5
- *
- */
- /* pdtrif()
- *
- * Inverse Poisson distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k;
- * float m, y, pdtrf();
- *
- * m = pdtrif( k, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the Poisson variable x such that the integral
- * from 0 to x of the Poisson density is equal to the
- * given probability y.
- *
- * This is accomplished using the inverse gamma integral
- * function and the relation
- *
- * m = igami( k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 8.7e-6 1.4e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * pdtri domain y < 0 or y >= 1 0.0
- * k < 0
- *
- */
-
-/* polevlf.c
- * p1evlf.c
- *
- * Evaluate polynomial
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * float x, y, coef[N+1], polevlf[];
- *
- * y = polevlf( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- *
- * The function p1evl() assumes that coef[N] = 1.0 and is
- * omitted from the array. Its calling arguments are
- * otherwise the same as polevl().
- *
- *
- * SPEED:
- *
- * In the interest of speed, there are no checks for out
- * of bounds arithmetic. This routine is used by most of
- * the functions in the library. Depending on available
- * equipment features, the user may wish to rewrite the
- * program in microcode or assembly language.
- *
- */
-
-/* polynf.c
- * polyrf.c
- * Arithmetic operations on polynomials
- *
- * In the following descriptions a, b, c are polynomials of degree
- * na, nb, nc respectively. The degree of a polynomial cannot
- * exceed a run-time value MAXPOLF. An operation that attempts
- * to use or generate a polynomial of higher degree may produce a
- * result that suffers truncation at degree MAXPOL. The value of
- * MAXPOL is set by calling the function
- *
- * polinif( maxpol );
- *
- * where maxpol is the desired maximum degree. This must be
- * done prior to calling any of the other functions in this module.
- * Memory for internal temporary polynomial storage is allocated
- * by polinif().
- *
- * Each polynomial is represented by an array containing its
- * coefficients, together with a separately declared integer equal
- * to the degree of the polynomial. The coefficients appear in
- * ascending order; that is,
- *
- * 2 na
- * a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .
- *
- *
- *
- * sum = poleva( a, na, x ); Evaluate polynomial a(t) at t = x.
- * polprtf( a, na, D ); Print the coefficients of a to D digits.
- * polclrf( a, na ); Set a identically equal to zero, up to a[na].
- * polmovf( a, na, b ); Set b = a.
- * poladdf( a, na, b, nb, c ); c = b + a, nc = max(na,nb)
- * polsubf( a, na, b, nb, c ); c = b - a, nc = max(na,nb)
- * polmulf( a, na, b, nb, c ); c = b * a, nc = na+nb
- *
- *
- * Division:
- *
- * i = poldivf( a, na, b, nb, c ); c = b / a, nc = MAXPOL
- *
- * returns i = the degree of the first nonzero coefficient of a.
- * The computed quotient c must be divided by x^i. An error message
- * is printed if a is identically zero.
- *
- *
- * Change of variables:
- * If a and b are polynomials, and t = a(x), then
- * c(t) = b(a(x))
- * is a polynomial found by substituting a(x) for t. The
- * subroutine call for this is
- *
- * polsbtf( a, na, b, nb, c );
- *
- *
- * Notes:
- * poldivf() is an integer routine; polevaf() is float.
- * Any of the arguments a, b, c may refer to the same array.
- *
- */
-
-/* powf.c
- *
- * Power function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, z, powf();
- *
- * z = powf( x, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes x raised to the yth power. Analytically,
- *
- * x**y = exp( y log(x) ).
- *
- * Following Cody and Waite, this program uses a lookup table
- * of 2**-i/16 and pseudo extended precision arithmetic to
- * obtain an extra three bits of accuracy in both the logarithm
- * and the exponential.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,10 100,000 1.4e-7 3.6e-8
- * 1/10 < x < 10, x uniformly distributed.
- * -10 < y < 10, y uniformly distributed.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * powf overflow x**y > MAXNUMF MAXNUMF
- * powf underflow x**y < 1/MAXNUMF 0.0
- * powf domain x<0 and y noninteger 0.0
- *
- */
-
-/* powif.c
- *
- * Real raised to integer power
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, powif();
- * int n;
- *
- * y = powif( x, n );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns argument x raised to the nth power.
- * The routine efficiently decomposes n as a sum of powers of
- * two. The desired power is a product of two-to-the-kth
- * powers of x. Thus to compute the 32767 power of x requires
- * 28 multiplications instead of 32767 multiplications.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Relative error:
- * arithmetic x domain n domain # trials peak rms
- * IEEE .04,26 -26,26 100000 1.1e-6 2.0e-7
- * IEEE 1,2 -128,128 100000 1.1e-5 1.0e-6
- *
- * Returns MAXNUMF on overflow, zero on underflow.
- *
- */
-
-/* psif.c
- *
- * Psi (digamma) function
- *
- *
- * SYNOPSIS:
- *
- * float x, y, psif();
- *
- * y = psif( x );
- *
- *
- * DESCRIPTION:
- *
- * d -
- * psi(x) = -- ln | (x)
- * dx
- *
- * is the logarithmic derivative of the gamma function.
- * For integer x,
- * n-1
- * -
- * psi(n) = -EUL + > 1/k.
- * -
- * k=1
- *
- * This formula is used for 0 < n <= 10. If x is negative, it
- * is transformed to a positive argument by the reflection
- * formula psi(1-x) = psi(x) + pi cot(pi x).
- * For general positive x, the argument is made greater than 10
- * using the recurrence psi(x+1) = psi(x) + 1/x.
- * Then the following asymptotic expansion is applied:
- *
- * inf. B
- * - 2k
- * psi(x) = log(x) - 1/2x - > -------
- * - 2k
- * k=1 2k x
- *
- * where the B2k are Bernoulli numbers.
- *
- * ACCURACY:
- * Absolute error, relative when |psi| > 1 :
- * arithmetic domain # trials peak rms
- * IEEE -33,0 30000 8.2e-7 1.2e-7
- * IEEE 0,33 100000 7.3e-7 7.7e-8
- *
- * ERROR MESSAGES:
- * message condition value returned
- * psi singularity x integer <=0 MAXNUMF
- */
-
-/* rgammaf.c
- *
- * Reciprocal gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, rgammaf();
- *
- * y = rgammaf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns one divided by the gamma function of the argument.
- *
- * The function is approximated by a Chebyshev expansion in
- * the interval [0,1]. Range reduction is by recurrence
- * for arguments between -34.034 and +34.84425627277176174.
- * 1/MAXNUMF is returned for positive arguments outside this
- * range.
- *
- * The reciprocal gamma function has no singularities,
- * but overflow and underflow may occur for large arguments.
- * These conditions return either MAXNUMF or 1/MAXNUMF with
- * appropriate sign.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -34,+34 100000 8.9e-7 1.1e-7
- */
-
-/* shichif.c
- *
- * Hyperbolic sine and cosine integrals
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, Chi, Shi;
- *
- * shichi( x, &Chi, &Shi );
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integrals
- *
- * x
- * -
- * | | cosh t - 1
- * Chi(x) = eul + ln x + | ----------- dt,
- * | | t
- * -
- * 0
- *
- * x
- * -
- * | | sinh t
- * Shi(x) = | ------ dt
- * | | t
- * -
- * 0
- *
- * where eul = 0.57721566490153286061 is Euler's constant.
- * The integrals are evaluated by power series for x < 8
- * and by Chebyshev expansions for x between 8 and 88.
- * For large x, both functions approach exp(x)/2x.
- * Arguments greater than 88 in magnitude return MAXNUM.
- *
- *
- * ACCURACY:
- *
- * Test interval 0 to 88.
- * Relative error:
- * arithmetic function # trials peak rms
- * IEEE Shi 20000 3.5e-7 7.0e-8
- * Absolute error, except relative when |Chi| > 1:
- * IEEE Chi 20000 3.8e-7 7.6e-8
- */
-
-/* sicif.c
- *
- * Sine and cosine integrals
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, Ci, Si;
- *
- * sicif( x, &Si, &Ci );
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the integrals
- *
- * x
- * -
- * | cos t - 1
- * Ci(x) = eul + ln x + | --------- dt,
- * | t
- * -
- * 0
- * x
- * -
- * | sin t
- * Si(x) = | ----- dt
- * | t
- * -
- * 0
- *
- * where eul = 0.57721566490153286061 is Euler's constant.
- * The integrals are approximated by rational functions.
- * For x > 8 auxiliary functions f(x) and g(x) are employed
- * such that
- *
- * Ci(x) = f(x) sin(x) - g(x) cos(x)
- * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
- *
- *
- * ACCURACY:
- * Test interval = [0,50].
- * Absolute error, except relative when > 1:
- * arithmetic function # trials peak rms
- * IEEE Si 30000 2.1e-7 4.3e-8
- * IEEE Ci 30000 3.9e-7 2.2e-8
- */
-
-/* sindgf.c
- *
- * Circular sine of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sindgf();
- *
- * y = sindgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-3600 100,000 1.2e-7 3.0e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2^24 0.0
- *
- */
-
-/* cosdgf.c
- *
- * Circular cosine of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cosdgf();
- *
- * y = cosdgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- */
-
-/* sinf.c
- *
- * Circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sinf();
- *
- * y = sinf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -4096,+4096 100,000 1.2e-7 3.0e-8
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2^24 0.0
- *
- * Partial loss of accuracy begins to occur at x = 2^13
- * = 8192. Results may be meaningless for x >= 2^24
- * The routine as implemented flags a TLOSS error
- * for x >= 2^24 and returns 0.0.
- */
-
-/* cosf.c
- *
- * Circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cosf();
- *
- * y = cosf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- */
-
-/* sinhf.c
- *
- * Hyperbolic sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sinhf();
- *
- * y = sinhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic sine of argument in the range MINLOGF to
- * MAXLOGF.
- *
- * The range is partitioned into two segments. If |x| <= 1, a
- * polynomial approximation is used.
- * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-MAXLOG 100000 1.1e-7 2.9e-8
- *
- */
-
-/* spencef.c
- *
- * Dilogarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, spencef();
- *
- * y = spencef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the integral
- *
- * x
- * -
- * | | log t
- * spence(x) = - | ----- dt
- * | | t - 1
- * -
- * 1
- *
- * for x >= 0. A rational approximation gives the integral in
- * the interval (0.5, 1.5). Transformation formulas for 1/x
- * and 1-x are employed outside the basic expansion range.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,4 30000 4.4e-7 6.3e-8
- *
- *
- */
-
-/* sqrtf.c
- *
- * Square root
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sqrtf();
- *
- * y = sqrtf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the square root of x.
- *
- * Range reduction involves isolating the power of two of the
- * argument and using a polynomial approximation to obtain
- * a rough value for the square root. Then Heron's iteration
- * is used three times to converge to an accurate value.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1.e38 100000 8.7e-8 2.9e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sqrtf domain x < 0 0.0
- *
- */
-
-/* stdtrf.c
- *
- * Student's t distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float t, stdtrf();
- * short k;
- *
- * y = stdtrf( k, t );
- *
- *
- * DESCRIPTION:
- *
- * Computes the integral from minus infinity to t of the Student
- * t distribution with integer k > 0 degrees of freedom:
- *
- * t
- * -
- * | |
- * - | 2 -(k+1)/2
- * | ( (k+1)/2 ) | ( x )
- * ---------------------- | ( 1 + --- ) dx
- * - | ( k )
- * sqrt( k pi ) | ( k/2 ) |
- * | |
- * -
- * -inf.
- *
- * Relation to incomplete beta integral:
- *
- * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
- * where
- * z = k/(k + t**2).
- *
- * For t < -1, this is the method of computation. For higher t,
- * a direct method is derived from integration by parts.
- * Since the function is symmetric about t=0, the area under the
- * right tail of the density is found by calling the function
- * with -t instead of t.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +/- 100 5000 2.3e-5 2.9e-6
- */
-
-/* struvef.c
- *
- * Struve function
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, struvef();
- *
- * y = struvef( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the Struve function Hv(x) of order v, argument x.
- * Negative x is rejected unless v is an integer.
- *
- * This module also contains the hypergeometric functions 1F2
- * and 3F0 and a routine for the Bessel function Yv(x) with
- * noninteger v.
- *
- *
- *
- * ACCURACY:
- *
- * v varies from 0 to 10.
- * Absolute error (relative error when |Hv(x)| > 1):
- * arithmetic domain # trials peak rms
- * IEEE -10,10 100000 9.0e-5 4.0e-6
- *
- */
-
-/* tandgf.c
- *
- * Circular tangent of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tandgf();
- *
- * y = tandgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular tangent of the radian argument x.
- *
- * Range reduction is into intervals of 45 degrees.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-2^24 50000 2.4e-7 4.8e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * tanf total loss x > 2^24 0.0
- *
- */
- /* cotdgf.c
- *
- * Circular cotangent of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cotdgf();
- *
- * y = cotdgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- * A common routine computes either the tangent or cotangent.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-2^24 50000 2.4e-7 4.8e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * cot total loss x > 2^24 0.0
- * cot singularity x = 0 MAXNUMF
- *
- */
-
-/* tanf.c
- *
- * Circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tanf();
- *
- * y = tanf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular tangent of the radian argument x.
- *
- * Range reduction is modulo pi/4. A polynomial approximation
- * is employed in the basic interval [0, pi/4].
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-4096 100000 3.3e-7 4.5e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * tanf total loss x > 2^24 0.0
- *
- */
- /* cotf.c
- *
- * Circular cotangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cotf();
- *
- * y = cotf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular cotangent of the radian argument x.
- * A common routine computes either the tangent or cotangent.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-4096 100000 3.0e-7 4.5e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * cot total loss x > 2^24 0.0
- * cot singularity x = 0 MAXNUMF
- *
- */
-
-/* tanhf.c
- *
- * Hyperbolic tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tanhf();
- *
- * y = tanhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic tangent of argument in the range MINLOG to
- * MAXLOG.
- *
- * A polynomial approximation is used for |x| < 0.625.
- * Otherwise,
- *
- * tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -2,2 100000 1.3e-7 2.6e-8
- *
- */
-
-/* ynf.c
- *
- * Bessel function of second kind of integer order
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, ynf();
- * int n;
- *
- * y = ynf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order n, where n is a
- * (possibly negative) integer.
- *
- * The function is evaluated by forward recurrence on
- * n, starting with values computed by the routines
- * y0() and y1().
- *
- * If n = 0 or 1 the routine for y0 or y1 is called
- * directly.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Absolute error, except relative when y > 1:
- *
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 10000 2.3e-6 3.4e-7
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * yn singularity x = 0 MAXNUMF
- * yn overflow MAXNUMF
- *
- * Spot checked against tables for x, n between 0 and 100.
- *
- */
-
- /* zetacf.c
- *
- * Riemann zeta function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, zetacf();
- *
- * y = zetacf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- *
- * inf.
- * - -x
- * zetac(x) = > k , x > 1,
- * -
- * k=2
- *
- * is related to the Riemann zeta function by
- *
- * Riemann zeta(x) = zetac(x) + 1.
- *
- * Extension of the function definition for x < 1 is implemented.
- * Zero is returned for x > log2(MAXNUM).
- *
- * An overflow error may occur for large negative x, due to the
- * gamma function in the reflection formula.
- *
- * ACCURACY:
- *
- * Tabulated values have full machine accuracy.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1,50 30000 5.5e-7 7.5e-8
- *
- *
- */
-
-/* zetaf.c
- *
- * Riemann zeta function of two arguments
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, q, y, zetaf();
- *
- * y = zetaf( x, q );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- *
- * inf.
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=0
- *
- * where x > 1 and q is not a negative integer or zero.
- * The Euler-Maclaurin summation formula is used to obtain
- * the expansion
- *
- * n
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=1
- *
- * 1-x inf. B x(x+1)...(x+2j)
- * (n+q) 1 - 2j
- * + --------- - ------- + > --------------------
- * x-1 x - x+2j+1
- * 2(n+q) j=1 (2j)! (n+q)
- *
- * where the B2j are Bernoulli numbers. Note that (see zetac.c)
- * zeta(x,1) = zetac(x) + 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,25 10000 6.9e-7 1.0e-7
- *
- * Large arguments may produce underflow in powf(), in which
- * case the results are inaccurate.
- *
- * REFERENCE:
- *
- * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
- * Series, and Products, p. 1073; Academic Press, 1980.
- *
- */
diff --git a/libm/float/acoshf.c b/libm/float/acoshf.c
deleted file mode 100644
index c45206125..000000000
--- a/libm/float/acoshf.c
+++ /dev/null
@@ -1,97 +0,0 @@
-/* acoshf.c
- *
- * Inverse hyperbolic cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, acoshf();
- *
- * y = acoshf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic cosine of argument.
- *
- * If 1 <= x < 1.5, a polynomial approximation
- *
- * sqrt(z) * P(z)
- *
- * where z = x-1, is used. Otherwise,
- *
- * acosh(x) = log( x + sqrt( (x-1)(x+1) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1,3 100000 1.8e-7 3.9e-8
- * IEEE 1,2000 100000 3.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * acoshf domain |x| < 1 0.0
- *
- */
-
-/* acosh.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision inverse hyperbolic cosine
- * test interval: [1.0, 1.5]
- * trials: 10000
- * peak relative error: 1.7e-7
- * rms relative error: 5.0e-8
- *
- * Copyright (C) 1989 by Stephen L. Moshier. All rights reserved.
- */
-#include <math.h>
-extern float LOGE2F;
-
-float sqrtf( float );
-float logf( float );
-
-float acoshf( float xx )
-{
-float x, z;
-
-x = xx;
-if( x < 1.0 )
- {
- mtherr( "acoshf", DOMAIN );
- return(0.0);
- }
-
-if( x > 1500.0 )
- return( logf(x) + LOGE2F );
-
-z = x - 1.0;
-
-if( z < 0.5 )
- {
- z =
- (((( 1.7596881071E-3 * z
- - 7.5272886713E-3) * z
- + 2.6454905019E-2) * z
- - 1.1784741703E-1) * z
- + 1.4142135263E0) * sqrtf( z );
- }
-else
- {
- z = sqrtf( z*(x+1.0) );
- z = logf(x + z);
- }
-return( z );
-}
diff --git a/libm/float/airyf.c b/libm/float/airyf.c
deleted file mode 100644
index a84a5c861..000000000
--- a/libm/float/airyf.c
+++ /dev/null
@@ -1,377 +0,0 @@
-/* airy.c
- *
- * Airy function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, ai, aip, bi, bip;
- * int airyf();
- *
- * airyf( x, _&ai, _&aip, _&bi, _&bip );
- *
- *
- *
- * DESCRIPTION:
- *
- * Solution of the differential equation
- *
- * y"(x) = xy.
- *
- * The function returns the two independent solutions Ai, Bi
- * and their first derivatives Ai'(x), Bi'(x).
- *
- * Evaluation is by power series summation for small x,
- * by rational minimax approximations for large x.
- *
- *
- *
- * ACCURACY:
- * Error criterion is absolute when function <= 1, relative
- * when function > 1, except * denotes relative error criterion.
- * For large negative x, the absolute error increases as x^1.5.
- * For large positive x, the relative error increases as x^1.5.
- *
- * Arithmetic domain function # trials peak rms
- * IEEE -10, 0 Ai 50000 7.0e-7 1.2e-7
- * IEEE 0, 10 Ai 50000 9.9e-6* 6.8e-7*
- * IEEE -10, 0 Ai' 50000 2.4e-6 3.5e-7
- * IEEE 0, 10 Ai' 50000 8.7e-6* 6.2e-7*
- * IEEE -10, 10 Bi 100000 2.2e-6 2.6e-7
- * IEEE -10, 10 Bi' 50000 2.2e-6 3.5e-7
- *
- */
- /* airy.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-static float c1 = 0.35502805388781723926;
-static float c2 = 0.258819403792806798405;
-static float sqrt3 = 1.732050807568877293527;
-static float sqpii = 5.64189583547756286948E-1;
-extern float PIF;
-
-extern float MAXNUMF, MACHEPF;
-#define MAXAIRY 25.77
-
-/* Note, these expansions are for double precision accuracy;
- * they have not yet been redesigned for single precision.
- */
-static float AN[8] = {
- 3.46538101525629032477e-1,
- 1.20075952739645805542e1,
- 7.62796053615234516538e1,
- 1.68089224934630576269e2,
- 1.59756391350164413639e2,
- 7.05360906840444183113e1,
- 1.40264691163389668864e1,
- 9.99999999999999995305e-1,
-};
-static float AD[8] = {
- 5.67594532638770212846e-1,
- 1.47562562584847203173e1,
- 8.45138970141474626562e1,
- 1.77318088145400459522e2,
- 1.64234692871529701831e2,
- 7.14778400825575695274e1,
- 1.40959135607834029598e1,
- 1.00000000000000000470e0,
-};
-
-
-static float APN[8] = {
- 6.13759184814035759225e-1,
- 1.47454670787755323881e1,
- 8.20584123476060982430e1,
- 1.71184781360976385540e2,
- 1.59317847137141783523e2,
- 6.99778599330103016170e1,
- 1.39470856980481566958e1,
- 1.00000000000000000550e0,
-};
-static float APD[8] = {
- 3.34203677749736953049e-1,
- 1.11810297306158156705e1,
- 7.11727352147859965283e1,
- 1.58778084372838313640e2,
- 1.53206427475809220834e2,
- 6.86752304592780337944e1,
- 1.38498634758259442477e1,
- 9.99999999999999994502e-1,
-};
-
-static float BN16[5] = {
--2.53240795869364152689e-1,
- 5.75285167332467384228e-1,
--3.29907036873225371650e-1,
- 6.44404068948199951727e-2,
--3.82519546641336734394e-3,
-};
-static float BD16[5] = {
-/* 1.00000000000000000000e0,*/
--7.15685095054035237902e0,
- 1.06039580715664694291e1,
--5.23246636471251500874e0,
- 9.57395864378383833152e-1,
--5.50828147163549611107e-2,
-};
-
-static float BPPN[5] = {
- 4.65461162774651610328e-1,
--1.08992173800493920734e0,
- 6.38800117371827987759e-1,
--1.26844349553102907034e-1,
- 7.62487844342109852105e-3,
-};
-static float BPPD[5] = {
-/* 1.00000000000000000000e0,*/
--8.70622787633159124240e0,
- 1.38993162704553213172e1,
--7.14116144616431159572e0,
- 1.34008595960680518666e0,
--7.84273211323341930448e-2,
-};
-
-static float AFN[9] = {
--1.31696323418331795333e-1,
--6.26456544431912369773e-1,
--6.93158036036933542233e-1,
--2.79779981545119124951e-1,
--4.91900132609500318020e-2,
--4.06265923594885404393e-3,
--1.59276496239262096340e-4,
--2.77649108155232920844e-6,
--1.67787698489114633780e-8,
-};
-static float AFD[9] = {
-/* 1.00000000000000000000e0,*/
- 1.33560420706553243746e1,
- 3.26825032795224613948e1,
- 2.67367040941499554804e1,
- 9.18707402907259625840e0,
- 1.47529146771666414581e0,
- 1.15687173795188044134e-1,
- 4.40291641615211203805e-3,
- 7.54720348287414296618e-5,
- 4.51850092970580378464e-7,
-};
-
-static float AGN[11] = {
- 1.97339932091685679179e-2,
- 3.91103029615688277255e-1,
- 1.06579897599595591108e0,
- 9.39169229816650230044e-1,
- 3.51465656105547619242e-1,
- 6.33888919628925490927e-2,
- 5.85804113048388458567e-3,
- 2.82851600836737019778e-4,
- 6.98793669997260967291e-6,
- 8.11789239554389293311e-8,
- 3.41551784765923618484e-10,
-};
-static float AGD[10] = {
-/* 1.00000000000000000000e0,*/
- 9.30892908077441974853e0,
- 1.98352928718312140417e1,
- 1.55646628932864612953e1,
- 5.47686069422975497931e0,
- 9.54293611618961883998e-1,
- 8.64580826352392193095e-2,
- 4.12656523824222607191e-3,
- 1.01259085116509135510e-4,
- 1.17166733214413521882e-6,
- 4.91834570062930015649e-9,
-};
-
-static float APFN[9] = {
- 1.85365624022535566142e-1,
- 8.86712188052584095637e-1,
- 9.87391981747398547272e-1,
- 4.01241082318003734092e-1,
- 7.10304926289631174579e-2,
- 5.90618657995661810071e-3,
- 2.33051409401776799569e-4,
- 4.08718778289035454598e-6,
- 2.48379932900442457853e-8,
-};
-static float APFD[9] = {
-/* 1.00000000000000000000e0,*/
- 1.47345854687502542552e1,
- 3.75423933435489594466e1,
- 3.14657751203046424330e1,
- 1.09969125207298778536e1,
- 1.78885054766999417817e0,
- 1.41733275753662636873e-1,
- 5.44066067017226003627e-3,
- 9.39421290654511171663e-5,
- 5.65978713036027009243e-7,
-};
-
-static float APGN[11] = {
--3.55615429033082288335e-2,
--6.37311518129435504426e-1,
--1.70856738884312371053e0,
--1.50221872117316635393e0,
--5.63606665822102676611e-1,
--1.02101031120216891789e-1,
--9.48396695961445269093e-3,
--4.60325307486780994357e-4,
--1.14300836484517375919e-5,
--1.33415518685547420648e-7,
--5.63803833958893494476e-10,
-};
-static float APGD[11] = {
-/* 1.00000000000000000000e0,*/
- 9.85865801696130355144e0,
- 2.16401867356585941885e1,
- 1.73130776389749389525e1,
- 6.17872175280828766327e0,
- 1.08848694396321495475e0,
- 9.95005543440888479402e-2,
- 4.78468199683886610842e-3,
- 1.18159633322838625562e-4,
- 1.37480673554219441465e-6,
- 5.79912514929147598821e-9,
-};
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-float polevlf(float, float *, int);
-float p1evlf(float, float *, int);
-float sinf(float), cosf(float), expf(float), sqrtf(float);
-
-int airyf( float xx, float *ai, float *aip, float *bi, float *bip )
-{
-float x, z, zz, t, f, g, uf, ug, k, zeta, theta;
-int domflg;
-
-x = xx;
-domflg = 0;
-if( x > MAXAIRY )
- {
- *ai = 0;
- *aip = 0;
- *bi = MAXNUMF;
- *bip = MAXNUMF;
- return(-1);
- }
-
-if( x < -2.09 )
- {
- domflg = 15;
- t = sqrtf(-x);
- zeta = -2.0 * x * t / 3.0;
- t = sqrtf(t);
- k = sqpii / t;
- z = 1.0/zeta;
- zz = z * z;
- uf = 1.0 + zz * polevlf( zz, AFN, 8 ) / p1evlf( zz, AFD, 9 );
- ug = z * polevlf( zz, AGN, 10 ) / p1evlf( zz, AGD, 10 );
- theta = zeta + 0.25 * PIF;
- f = sinf( theta );
- g = cosf( theta );
- *ai = k * (f * uf - g * ug);
- *bi = k * (g * uf + f * ug);
- uf = 1.0 + zz * polevlf( zz, APFN, 8 ) / p1evlf( zz, APFD, 9 );
- ug = z * polevlf( zz, APGN, 10 ) / p1evlf( zz, APGD, 10 );
- k = sqpii * t;
- *aip = -k * (g * uf + f * ug);
- *bip = k * (f * uf - g * ug);
- return(0);
- }
-
-if( x >= 2.09 ) /* cbrt(9) */
- {
- domflg = 5;
- t = sqrtf(x);
- zeta = 2.0 * x * t / 3.0;
- g = expf( zeta );
- t = sqrtf(t);
- k = 2.0 * t * g;
- z = 1.0/zeta;
- f = polevlf( z, AN, 7 ) / polevlf( z, AD, 7 );
- *ai = sqpii * f / k;
- k = -0.5 * sqpii * t / g;
- f = polevlf( z, APN, 7 ) / polevlf( z, APD, 7 );
- *aip = f * k;
-
- if( x > 8.3203353 ) /* zeta > 16 */
- {
- f = z * polevlf( z, BN16, 4 ) / p1evlf( z, BD16, 5 );
- k = sqpii * g;
- *bi = k * (1.0 + f) / t;
- f = z * polevlf( z, BPPN, 4 ) / p1evlf( z, BPPD, 5 );
- *bip = k * t * (1.0 + f);
- return(0);
- }
- }
-
-f = 1.0;
-g = x;
-t = 1.0;
-uf = 1.0;
-ug = x;
-k = 1.0;
-z = x * x * x;
-while( t > MACHEPF )
- {
- uf *= z;
- k += 1.0;
- uf /=k;
- ug *= z;
- k += 1.0;
- ug /=k;
- uf /=k;
- f += uf;
- k += 1.0;
- ug /=k;
- g += ug;
- t = fabsf(uf/f);
- }
-uf = c1 * f;
-ug = c2 * g;
-if( (domflg & 1) == 0 )
- *ai = uf - ug;
-if( (domflg & 2) == 0 )
- *bi = sqrt3 * (uf + ug);
-
-/* the deriviative of ai */
-k = 4.0;
-uf = x * x/2.0;
-ug = z/3.0;
-f = uf;
-g = 1.0 + ug;
-uf /= 3.0;
-t = 1.0;
-
-while( t > MACHEPF )
- {
- uf *= z;
- ug /=k;
- k += 1.0;
- ug *= z;
- uf /=k;
- f += uf;
- k += 1.0;
- ug /=k;
- uf /=k;
- g += ug;
- k += 1.0;
- t = fabsf(ug/g);
- }
-
-uf = c1 * f;
-ug = c2 * g;
-if( (domflg & 4) == 0 )
- *aip = uf - ug;
-if( (domflg & 8) == 0 )
- *bip = sqrt3 * (uf + ug);
-return(0);
-}
diff --git a/libm/float/asinf.c b/libm/float/asinf.c
deleted file mode 100644
index c96d75acb..000000000
--- a/libm/float/asinf.c
+++ /dev/null
@@ -1,186 +0,0 @@
-/* asinf.c
- *
- * Inverse circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, asinf();
- *
- * y = asinf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
- *
- * A polynomial of the form x + x**3 P(x**2)
- * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
- * transformed by the identity
- *
- * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1, 1 100000 2.5e-7 5.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * asinf domain |x| > 1 0.0
- *
- */
- /* acosf()
- *
- * Inverse circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, acosf();
- *
- * y = acosf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose cosine
- * is x.
- *
- * Analytically, acos(x) = pi/2 - asin(x). However if |x| is
- * near 1, there is cancellation error in subtracting asin(x)
- * from pi/2. Hence if x < -0.5,
- *
- * acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) );
- *
- * or if x > +0.5,
- *
- * acos(x) = 2.0 * asin( sqrt((1-x)/2) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1, 1 100000 1.4e-7 4.2e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * acosf domain |x| > 1 0.0
- */
-
-/* asin.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision circular arcsine
- * test interval: [-0.5, +0.5]
- * trials: 10000
- * peak relative error: 6.7e-8
- * rms relative error: 2.5e-8
- */
-#include <math.h>
-extern float PIF, PIO2F;
-
-float sqrtf( float );
-
-float asinf( float xx )
-{
-float a, x, z;
-int sign, flag;
-
-x = xx;
-
-if( x > 0 )
- {
- sign = 1;
- a = x;
- }
-else
- {
- sign = -1;
- a = -x;
- }
-
-if( a > 1.0 )
- {
- mtherr( "asinf", DOMAIN );
- return( 0.0 );
- }
-
-if( a < 1.0e-4 )
- {
- z = a;
- goto done;
- }
-
-if( a > 0.5 )
- {
- z = 0.5 * (1.0 - a);
- x = sqrtf( z );
- flag = 1;
- }
-else
- {
- x = a;
- z = x * x;
- flag = 0;
- }
-
-z =
-(((( 4.2163199048E-2 * z
- + 2.4181311049E-2) * z
- + 4.5470025998E-2) * z
- + 7.4953002686E-2) * z
- + 1.6666752422E-1) * z * x
- + x;
-
-if( flag != 0 )
- {
- z = z + z;
- z = PIO2F - z;
- }
-done:
-if( sign < 0 )
- z = -z;
-return( z );
-}
-
-
-
-
-float acosf( float x )
-{
-
-if( x < -1.0 )
- goto domerr;
-
-if( x < -0.5)
- return( PIF - 2.0 * asinf( sqrtf(0.5*(1.0+x)) ) );
-
-if( x > 1.0 )
- {
-domerr: mtherr( "acosf", DOMAIN );
- return( 0.0 );
- }
-
-if( x > 0.5 )
- return( 2.0 * asinf( sqrtf(0.5*(1.0-x) ) ) );
-
-return( PIO2F - asinf(x) );
-}
-
diff --git a/libm/float/asinhf.c b/libm/float/asinhf.c
deleted file mode 100644
index d3fbe10a7..000000000
--- a/libm/float/asinhf.c
+++ /dev/null
@@ -1,88 +0,0 @@
-/* asinhf.c
- *
- * Inverse hyperbolic sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, asinhf();
- *
- * y = asinhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic sine of argument.
- *
- * If |x| < 0.5, the function is approximated by a rational
- * form x + x**3 P(x)/Q(x). Otherwise,
- *
- * asinh(x) = log( x + sqrt(1 + x*x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -3,3 100000 2.4e-7 4.1e-8
- *
- */
-
-/* asinh.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision inverse hyperbolic sine
- * test interval: [-0.5, +0.5]
- * trials: 10000
- * peak relative error: 8.8e-8
- * rms relative error: 3.2e-8
- */
-#include <math.h>
-extern float LOGE2F;
-
-float logf( float );
-float sqrtf( float );
-
-float asinhf( float xx )
-{
-float x, z;
-
-if( xx < 0 )
- x = -xx;
-else
- x = xx;
-
-if( x > 1500.0 )
- {
- z = logf(x) + LOGE2F;
- goto done;
- }
-z = x * x;
-if( x < 0.5 )
- {
- z =
- ((( 2.0122003309E-2 * z
- - 4.2699340972E-2) * z
- + 7.4847586088E-2) * z
- - 1.6666288134E-1) * z * x
- + x;
- }
-else
- {
- z = sqrtf( z + 1.0 );
- z = logf( x + z );
- }
-done:
-if( xx < 0 )
- z = -z;
-return( z );
-}
-
diff --git a/libm/float/atanf.c b/libm/float/atanf.c
deleted file mode 100644
index 321e3be39..000000000
--- a/libm/float/atanf.c
+++ /dev/null
@@ -1,190 +0,0 @@
-/* atanf.c
- *
- * Inverse circular tangent
- * (arctangent)
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, atanf();
- *
- * y = atanf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose tangent
- * is x.
- *
- * Range reduction is from four intervals into the interval
- * from zero to tan( pi/8 ). A polynomial approximates
- * the function in this basic interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 100000 1.9e-7 4.1e-8
- *
- */
- /* atan2f()
- *
- * Quadrant correct inverse circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, z, atan2f();
- *
- * z = atan2f( y, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle whose tangent is y/x.
- * Define compile time symbol ANSIC = 1 for ANSI standard,
- * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
- * 0 to 2PI, args (x,y).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 100000 1.9e-7 4.1e-8
- * See atan.c.
- *
- */
-
-/* atan.c */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision circular arcsine
- * test interval: [-tan(pi/8), +tan(pi/8)]
- * trials: 10000
- * peak relative error: 7.7e-8
- * rms relative error: 2.9e-8
- */
-#include <math.h>
-extern float PIF, PIO2F, PIO4F;
-
-float atanf( float xx )
-{
-float x, y, z;
-int sign;
-
-x = xx;
-
-/* make argument positive and save the sign */
-if( xx < 0.0 )
- {
- sign = -1;
- x = -xx;
- }
-else
- {
- sign = 1;
- x = xx;
- }
-/* range reduction */
-if( x > 2.414213562373095 ) /* tan 3pi/8 */
- {
- y = PIO2F;
- x = -( 1.0/x );
- }
-
-else if( x > 0.4142135623730950 ) /* tan pi/8 */
- {
- y = PIO4F;
- x = (x-1.0)/(x+1.0);
- }
-else
- y = 0.0;
-
-z = x * x;
-y +=
-((( 8.05374449538e-2 * z
- - 1.38776856032E-1) * z
- + 1.99777106478E-1) * z
- - 3.33329491539E-1) * z * x
- + x;
-
-if( sign < 0 )
- y = -y;
-
-return( y );
-}
-
-
-
-
-float atan2f( float y, float x )
-{
-float z, w;
-int code;
-
-
-code = 0;
-
-if( x < 0.0 )
- code = 2;
-if( y < 0.0 )
- code |= 1;
-
-if( x == 0.0 )
- {
- if( code & 1 )
- {
-#if ANSIC
- return( -PIO2F );
-#else
- return( 3.0*PIO2F );
-#endif
- }
- if( y == 0.0 )
- return( 0.0 );
- return( PIO2F );
- }
-
-if( y == 0.0 )
- {
- if( code & 2 )
- return( PIF );
- return( 0.0 );
- }
-
-
-switch( code )
- {
- default:
-#if ANSIC
- case 0:
- case 1: w = 0.0; break;
- case 2: w = PIF; break;
- case 3: w = -PIF; break;
-#else
- case 0: w = 0.0; break;
- case 1: w = 2.0 * PIF; break;
- case 2:
- case 3: w = PIF; break;
-#endif
- }
-
-z = atanf( y/x );
-
-return( w + z );
-}
-
diff --git a/libm/float/atanhf.c b/libm/float/atanhf.c
deleted file mode 100644
index dfadad09e..000000000
--- a/libm/float/atanhf.c
+++ /dev/null
@@ -1,92 +0,0 @@
-/* atanhf.c
- *
- * Inverse hyperbolic tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, atanhf();
- *
- * y = atanhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic tangent of argument in the range
- * MINLOGF to MAXLOGF.
- *
- * If |x| < 0.5, a polynomial approximation is used.
- * Otherwise,
- * atanh(x) = 0.5 * log( (1+x)/(1-x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1,1 100000 1.4e-7 3.1e-8
- *
- */
-
-/* atanh.c */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright (C) 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision inverse hyperbolic tangent
- * test interval: [-0.5, +0.5]
- * trials: 10000
- * peak relative error: 8.2e-8
- * rms relative error: 3.0e-8
- */
-#include <math.h>
-extern float MAXNUMF;
-
-float logf( float );
-
-float atanhf( float xx )
-{
-float x, z;
-
-x = xx;
-if( x < 0 )
- z = -x;
-else
- z = x;
-if( z >= 1.0 )
- {
- if( x == 1.0 )
- return( MAXNUMF );
- if( x == -1.0 )
- return( -MAXNUMF );
- mtherr( "atanhl", DOMAIN );
- return( MAXNUMF );
- }
-
-if( z < 1.0e-4 )
- return(x);
-
-if( z < 0.5 )
- {
- z = x * x;
- z =
- (((( 1.81740078349E-1 * z
- + 8.24370301058E-2) * z
- + 1.46691431730E-1) * z
- + 1.99782164500E-1) * z
- + 3.33337300303E-1) * z * x
- + x;
- }
-else
- {
- z = 0.5 * logf( (1.0+x)/(1.0-x) );
- }
-return( z );
-}
diff --git a/libm/float/bdtrf.c b/libm/float/bdtrf.c
deleted file mode 100644
index e063f1c77..000000000
--- a/libm/float/bdtrf.c
+++ /dev/null
@@ -1,247 +0,0 @@
-/* bdtrf.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrf();
- *
- * y = bdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.9e-5 1.1e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrf domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- *
- */
- /* bdtrcf()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrcf();
- *
- * y = bdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.0e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrcf domain x<0, x>1, n<k 0.0
- */
- /* bdtrif()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrif();
- *
- * p = bdtrf( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 3.5e-5 3.3e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrif domain k < 0, n <= k 0.0
- * x < 0, x > 1
- *
- */
-
-/* bdtr() */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-#ifdef ANSIC
-float incbetf(float, float, float), powf(float, float);
-float incbif( float, float, float );
-#else
-float incbetf(), powf(), incbif();
-#endif
-
-float bdtrcf( int k, int n, float pp )
-{
-float p, dk, dn;
-
-p = pp;
-if( (p < 0.0) || (p > 1.0) )
- goto domerr;
-if( k < 0 )
- return( 1.0 );
-
-if( n < k )
- {
-domerr:
- mtherr( "bdtrcf", DOMAIN );
- return( 0.0 );
- }
-
-if( k == n )
- return( 0.0 );
-dn = n - k;
-if( k == 0 )
- {
- dk = 1.0 - powf( 1.0-p, dn );
- }
-else
- {
- dk = k + 1;
- dk = incbetf( dk, dn, p );
- }
-return( dk );
-}
-
-
-
-float bdtrf( int k, int n, float pp )
-{
-float p, dk, dn;
-
-p = pp;
-if( (p < 0.0) || (p > 1.0) )
- goto domerr;
-if( (k < 0) || (n < k) )
- {
-domerr:
- mtherr( "bdtrf", DOMAIN );
- return( 0.0 );
- }
-
-if( k == n )
- return( 1.0 );
-
-dn = n - k;
-if( k == 0 )
- {
- dk = powf( 1.0-p, dn );
- }
-else
- {
- dk = k + 1;
- dk = incbetf( dn, dk, 1.0 - p );
- }
-return( dk );
-}
-
-
-float bdtrif( int k, int n, float yy )
-{
-float y, dk, dn, p;
-
-y = yy;
-if( (y < 0.0) || (y > 1.0) )
- goto domerr;
-if( (k < 0) || (n <= k) )
- {
-domerr:
- mtherr( "bdtrif", DOMAIN );
- return( 0.0 );
- }
-
-dn = n - k;
-if( k == 0 )
- {
- p = 1.0 - powf( y, 1.0/dn );
- }
-else
- {
- dk = k + 1;
- p = 1.0 - incbif( dn, dk, y );
- }
-return( p );
-}
diff --git a/libm/float/betaf.c b/libm/float/betaf.c
deleted file mode 100644
index 7a1963191..000000000
--- a/libm/float/betaf.c
+++ /dev/null
@@ -1,122 +0,0 @@
-/* betaf.c
- *
- * Beta function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, y, betaf();
- *
- * y = betaf( a, b );
- *
- *
- *
- * DESCRIPTION:
- *
- * - -
- * | (a) | (b)
- * beta( a, b ) = -----------.
- * -
- * | (a+b)
- *
- * For large arguments the logarithm of the function is
- * evaluated using lgam(), then exponentiated.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 10000 4.0e-5 6.0e-6
- * IEEE -20,0 10000 4.9e-3 5.4e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * betaf overflow log(beta) > MAXLOG 0.0
- * a or b <0 integer 0.0
- *
- */
-
-/* beta.c */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#define MAXGAM 34.84425627277176174
-
-
-extern float MAXLOGF, MAXNUMF;
-extern int sgngamf;
-
-#ifdef ANSIC
-float gammaf(float), lgamf(float), expf(float), floorf(float);
-#else
-float gammaf(), lgamf(), expf(), floorf();
-#endif
-
-float betaf( float aa, float bb )
-{
-float a, b, y;
-int sign;
-
-sign = 1;
-a = aa;
-b = bb;
-if( a <= 0.0 )
- {
- if( a == floorf(a) )
- goto over;
- }
-if( b <= 0.0 )
- {
- if( b == floorf(b) )
- goto over;
- }
-
-
-y = a + b;
-if( fabsf(y) > MAXGAM )
- {
- y = lgamf(y);
- sign *= sgngamf; /* keep track of the sign */
- y = lgamf(b) - y;
- sign *= sgngamf;
- y = lgamf(a) + y;
- sign *= sgngamf;
- if( y > MAXLOGF )
- {
-over:
- mtherr( "betaf", OVERFLOW );
- return( sign * MAXNUMF );
- }
- return( sign * expf(y) );
- }
-
-y = gammaf(y);
-if( y == 0.0 )
- goto over;
-
-if( a > b )
- {
- y = gammaf(a)/y;
- y *= gammaf(b);
- }
-else
- {
- y = gammaf(b)/y;
- y *= gammaf(a);
- }
-
-return(y);
-}
diff --git a/libm/float/cbrtf.c b/libm/float/cbrtf.c
deleted file mode 100644
index ca9b433d9..000000000
--- a/libm/float/cbrtf.c
+++ /dev/null
@@ -1,119 +0,0 @@
-/* cbrtf.c
- *
- * Cube root
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cbrtf();
- *
- * y = cbrtf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the cube root of the argument, which may be negative.
- *
- * Range reduction involves determining the power of 2 of
- * the argument. A polynomial of degree 2 applied to the
- * mantissa, and multiplication by the cube root of 1, 2, or 4
- * approximates the root to within about 0.1%. Then Newton's
- * iteration is used to converge to an accurate result.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1e38 100000 7.6e-8 2.7e-8
- *
- */
- /* cbrt.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-static float CBRT2 = 1.25992104989487316477;
-static float CBRT4 = 1.58740105196819947475;
-
-
-float frexpf(float, int *), ldexpf(float, int);
-
-float cbrtf( float xx )
-{
-int e, rem, sign;
-float x, z;
-
-x = xx;
-if( x == 0 )
- return( 0.0 );
-if( x > 0 )
- sign = 1;
-else
- {
- sign = -1;
- x = -x;
- }
-
-z = x;
-/* extract power of 2, leaving
- * mantissa between 0.5 and 1
- */
-x = frexpf( x, &e );
-
-/* Approximate cube root of number between .5 and 1,
- * peak relative error = 9.2e-6
- */
-x = (((-0.13466110473359520655053 * x
- + 0.54664601366395524503440 ) * x
- - 0.95438224771509446525043 ) * x
- + 1.1399983354717293273738 ) * x
- + 0.40238979564544752126924;
-
-/* exponent divided by 3 */
-if( e >= 0 )
- {
- rem = e;
- e /= 3;
- rem -= 3*e;
- if( rem == 1 )
- x *= CBRT2;
- else if( rem == 2 )
- x *= CBRT4;
- }
-
-
-/* argument less than 1 */
-
-else
- {
- e = -e;
- rem = e;
- e /= 3;
- rem -= 3*e;
- if( rem == 1 )
- x /= CBRT2;
- else if( rem == 2 )
- x /= CBRT4;
- e = -e;
- }
-
-/* multiply by power of 2 */
-x = ldexpf( x, e );
-
-/* Newton iteration */
-x -= ( x - (z/(x*x)) ) * 0.333333333333;
-
-if( sign < 0 )
- x = -x;
-return(x);
-}
diff --git a/libm/float/chbevlf.c b/libm/float/chbevlf.c
deleted file mode 100644
index 343d00a22..000000000
--- a/libm/float/chbevlf.c
+++ /dev/null
@@ -1,86 +0,0 @@
-/* chbevlf.c
- *
- * Evaluate Chebyshev series
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * float x, y, coef[N], chebevlf();
- *
- * y = chbevlf( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the series
- *
- * N-1
- * - '
- * y = > coef[i] T (x/2)
- * - i
- * i=0
- *
- * of Chebyshev polynomials Ti at argument x/2.
- *
- * Coefficients are stored in reverse order, i.e. the zero
- * order term is last in the array. Note N is the number of
- * coefficients, not the order.
- *
- * If coefficients are for the interval a to b, x must
- * have been transformed to x -> 2(2x - b - a)/(b-a) before
- * entering the routine. This maps x from (a, b) to (-1, 1),
- * over which the Chebyshev polynomials are defined.
- *
- * If the coefficients are for the inverted interval, in
- * which (a, b) is mapped to (1/b, 1/a), the transformation
- * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
- * this becomes x -> 4a/x - 1.
- *
- *
- *
- * SPEED:
- *
- * Taking advantage of the recurrence properties of the
- * Chebyshev polynomials, the routine requires one more
- * addition per loop than evaluating a nested polynomial of
- * the same degree.
- *
- */
- /* chbevl.c */
-
-/*
-Cephes Math Library Release 2.0: April, 1987
-Copyright 1985, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#ifdef ANSIC
-float chbevlf( float x, float *array, int n )
-#else
-float chbevlf( x, array, n )
-float x;
-float *array;
-int n;
-#endif
-{
-float b0, b1, b2, *p;
-int i;
-
-p = array;
-b0 = *p++;
-b1 = 0.0;
-i = n - 1;
-
-do
- {
- b2 = b1;
- b1 = b0;
- b0 = x * b1 - b2 + *p++;
- }
-while( --i );
-
-return( 0.5*(b0-b2) );
-}
diff --git a/libm/float/chdtrf.c b/libm/float/chdtrf.c
deleted file mode 100644
index 53bd3d961..000000000
--- a/libm/float/chdtrf.c
+++ /dev/null
@@ -1,210 +0,0 @@
-/* chdtrf.c
- *
- * Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df, x, y, chdtrf();
- *
- * y = chdtrf( df, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the left hand tail (from 0 to x)
- * of the Chi square probability density function with
- * v degrees of freedom.
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 3.2e-5 5.0e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtrf domain x < 0 or v < 1 0.0
- */
- /* chdtrcf()
- *
- * Complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, chdtrcf();
- *
- * y = chdtrcf( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the right hand tail (from x to
- * infinity) of the Chi square probability density function
- * with v degrees of freedom:
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 2.7e-5 3.2e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtrc domain x < 0 or v < 1 0.0
- */
- /* chdtrif()
- *
- * Inverse of complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df, x, y, chdtrif();
- *
- * x = chdtrif( df, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the Chi-square argument x such that the integral
- * from x to infinity of the Chi-square density is equal
- * to the given cumulative probability y.
- *
- * This is accomplished using the inverse gamma integral
- * function and the relation
- *
- * x/2 = igami( df/2, y );
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 10000 2.2e-5 8.5e-7
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtri domain y < 0 or y > 1 0.0
- * v < 1
- *
- */
-
-/* chdtr() */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-#ifdef ANSIC
-float igamcf(float, float), igamf(float, float), igamif(float, float);
-#else
-float igamcf(), igamf(), igamif();
-#endif
-
-float chdtrcf(float dff, float xx)
-{
-float df, x;
-
-df = dff;
-x = xx;
-
-if( (x < 0.0) || (df < 1.0) )
- {
- mtherr( "chdtrcf", DOMAIN );
- return(0.0);
- }
-return( igamcf( 0.5*df, 0.5*x ) );
-}
-
-
-float chdtrf(float dff, float xx)
-{
-float df, x;
-
-df = dff;
-x = xx;
-if( (x < 0.0) || (df < 1.0) )
- {
- mtherr( "chdtrf", DOMAIN );
- return(0.0);
- }
-return( igamf( 0.5*df, 0.5*x ) );
-}
-
-
-float chdtrif( float dff, float yy )
-{
-float y, df, x;
-
-y = yy;
-df = dff;
-if( (y < 0.0) || (y > 1.0) || (df < 1.0) )
- {
- mtherr( "chdtrif", DOMAIN );
- return(0.0);
- }
-
-x = igamif( 0.5 * df, y );
-return( 2.0 * x );
-}
diff --git a/libm/float/clogf.c b/libm/float/clogf.c
deleted file mode 100644
index 5f4944eba..000000000
--- a/libm/float/clogf.c
+++ /dev/null
@@ -1,669 +0,0 @@
-/* clogf.c
- *
- * Complex natural logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * void clogf();
- * cmplxf z, w;
- *
- * clogf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns complex logarithm to the base e (2.718...) of
- * the complex argument x.
- *
- * If z = x + iy, r = sqrt( x**2 + y**2 ),
- * then
- * w = log(r) + i arctan(y/x).
- *
- * The arctangent ranges from -PI to +PI.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.9e-6 6.2e-8
- *
- * Larger relative error can be observed for z near 1 +i0.
- * In IEEE arithmetic the peak absolute error is 3.1e-7.
- *
- */
-
-#include <math.h>
-extern float MAXNUMF, MACHEPF, PIF, PIO2F;
-#ifdef ANSIC
-float cabsf(cmplxf *), sqrtf(float), logf(float), atan2f(float, float);
-float expf(float), sinf(float), cosf(float);
-float coshf(float), sinhf(float), asinf(float);
-float ctansf(cmplxf *), redupif(float);
-void cchshf( float, float *, float * );
-void caddf( cmplxf *, cmplxf *, cmplxf * );
-void csqrtf( cmplxf *, cmplxf * );
-#else
-float cabsf(), sqrtf(), logf(), atan2f();
-float expf(), sinf(), cosf();
-float coshf(), sinhf(), asinf();
-float ctansf(), redupif();
-void cchshf(), csqrtf(), caddf();
-#endif
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-void clogf( z, w )
-register cmplxf *z, *w;
-{
-float p, rr;
-
-/*rr = sqrtf( z->r * z->r + z->i * z->i );*/
-rr = cabsf(z);
-p = logf(rr);
-#if ANSIC
-rr = atan2f( z->i, z->r );
-#else
-rr = atan2f( z->r, z->i );
-if( rr > PIF )
- rr -= PIF + PIF;
-#endif
-w->i = rr;
-w->r = p;
-}
- /* cexpf()
- *
- * Complex exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * void cexpf();
- * cmplxf z, w;
- *
- * cexpf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the exponential of the complex argument z
- * into the complex result w.
- *
- * If
- * z = x + iy,
- * r = exp(x),
- *
- * then
- *
- * w = r cos y + i r sin y.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.4e-7 4.5e-8
- *
- */
-
-void cexpf( z, w )
-register cmplxf *z, *w;
-{
-float r;
-
-r = expf( z->r );
-w->r = r * cosf( z->i );
-w->i = r * sinf( z->i );
-}
- /* csinf()
- *
- * Complex circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * void csinf();
- * cmplxf z, w;
- *
- * csinf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * w = sin x cosh y + i cos x sinh y.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.9e-7 5.5e-8
- *
- */
-
-void csinf( z, w )
-register cmplxf *z, *w;
-{
-float ch, sh;
-
-cchshf( z->i, &ch, &sh );
-w->r = sinf( z->r ) * ch;
-w->i = cosf( z->r ) * sh;
-}
-
-
-
-/* calculate cosh and sinh */
-
-void cchshf( float xx, float *c, float *s )
-{
-float x, e, ei;
-
-x = xx;
-if( fabsf(x) <= 0.5f )
- {
- *c = coshf(x);
- *s = sinhf(x);
- }
-else
- {
- e = expf(x);
- ei = 0.5f/e;
- e = 0.5f * e;
- *s = e - ei;
- *c = e + ei;
- }
-}
-
- /* ccosf()
- *
- * Complex circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * void ccosf();
- * cmplxf z, w;
- *
- * ccosf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * w = cos x cosh y - i sin x sinh y.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.8e-7 5.5e-8
- */
-
-void ccosf( z, w )
-register cmplxf *z, *w;
-{
-float ch, sh;
-
-cchshf( z->i, &ch, &sh );
-w->r = cosf( z->r ) * ch;
-w->i = -sinf( z->r ) * sh;
-}
- /* ctanf()
- *
- * Complex circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void ctanf();
- * cmplxf z, w;
- *
- * ctanf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * sin 2x + i sinh 2y
- * w = --------------------.
- * cos 2x + cosh 2y
- *
- * On the real axis the denominator is zero at odd multiples
- * of PI/2. The denominator is evaluated by its Taylor
- * series near these points.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 3.3e-7 5.1e-8
- */
-
-void ctanf( z, w )
-register cmplxf *z, *w;
-{
-float d;
-
-d = cosf( 2.0f * z->r ) + coshf( 2.0f * z->i );
-
-if( fabsf(d) < 0.25f )
- d = ctansf(z);
-
-if( d == 0.0f )
- {
- mtherr( "ctanf", OVERFLOW );
- w->r = MAXNUMF;
- w->i = MAXNUMF;
- return;
- }
-
-w->r = sinf( 2.0f * z->r ) / d;
-w->i = sinhf( 2.0f * z->i ) / d;
-}
- /* ccotf()
- *
- * Complex circular cotangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void ccotf();
- * cmplxf z, w;
- *
- * ccotf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * sin 2x - i sinh 2y
- * w = --------------------.
- * cosh 2y - cos 2x
- *
- * On the real axis, the denominator has zeros at even
- * multiples of PI/2. Near these points it is evaluated
- * by a Taylor series.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 3.6e-7 5.7e-8
- * Also tested by ctan * ccot = 1 + i0.
- */
-
-void ccotf( z, w )
-register cmplxf *z, *w;
-{
-float d;
-
-
-d = coshf(2.0f * z->i) - cosf(2.0f * z->r);
-
-if( fabsf(d) < 0.25f )
- d = ctansf(z);
-
-if( d == 0.0f )
- {
- mtherr( "ccotf", OVERFLOW );
- w->r = MAXNUMF;
- w->i = MAXNUMF;
- return;
- }
-
-d = 1.0f/d;
-w->r = sinf( 2.0f * z->r ) * d;
-w->i = -sinhf( 2.0f * z->i ) * d;
-}
-
-/* Program to subtract nearest integer multiple of PI */
-/* extended precision value of PI: */
-
-static float DP1 = 3.140625;
-static float DP2 = 9.67502593994140625E-4;
-static float DP3 = 1.509957990978376432E-7;
-
-
-float redupif(float xx)
-{
-float x, t;
-long i;
-
-x = xx;
-t = x/PIF;
-if( t >= 0.0f )
- t += 0.5f;
-else
- t -= 0.5f;
-
-i = t; /* the multiple */
-t = i;
-t = ((x - t * DP1) - t * DP2) - t * DP3;
-return(t);
-}
-
-/* Taylor series expansion for cosh(2y) - cos(2x) */
-
-float ctansf(z)
-cmplxf *z;
-{
-float f, x, x2, y, y2, rn, t, d;
-
-x = fabsf( 2.0f * z->r );
-y = fabsf( 2.0f * z->i );
-
-x = redupif(x);
-
-x = x * x;
-y = y * y;
-x2 = 1.0f;
-y2 = 1.0f;
-f = 1.0f;
-rn = 0.0f;
-d = 0.0f;
-do
- {
- rn += 1.0f;
- f *= rn;
- rn += 1.0f;
- f *= rn;
- x2 *= x;
- y2 *= y;
- t = y2 + x2;
- t /= f;
- d += t;
-
- rn += 1.0f;
- f *= rn;
- rn += 1.0f;
- f *= rn;
- x2 *= x;
- y2 *= y;
- t = y2 - x2;
- t /= f;
- d += t;
- }
-while( fabsf(t/d) > MACHEPF );
-return(d);
-}
- /* casinf()
- *
- * Complex circular arc sine
- *
- *
- *
- * SYNOPSIS:
- *
- * void casinf();
- * cmplxf z, w;
- *
- * casinf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Inverse complex sine:
- *
- * 2
- * w = -i clog( iz + csqrt( 1 - z ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.1e-5 1.5e-6
- * Larger relative error can be observed for z near zero.
- *
- */
-
-void casinf( z, w )
-cmplxf *z, *w;
-{
-float x, y;
-static cmplxf ca, ct, zz, z2;
-/*
-float cn, n;
-static float a, b, s, t, u, v, y2;
-static cmplxf sum;
-*/
-
-x = z->r;
-y = z->i;
-
-if( y == 0.0f )
- {
- if( fabsf(x) > 1.0f )
- {
- w->r = PIO2F;
- w->i = 0.0f;
- mtherr( "casinf", DOMAIN );
- }
- else
- {
- w->r = asinf(x);
- w->i = 0.0f;
- }
- return;
- }
-
-/* Power series expansion */
-/*
-b = cabsf(z);
-if( b < 0.125 )
-{
-z2.r = (x - y) * (x + y);
-z2.i = 2.0 * x * y;
-
-cn = 1.0;
-n = 1.0;
-ca.r = x;
-ca.i = y;
-sum.r = x;
-sum.i = y;
-do
- {
- ct.r = z2.r * ca.r - z2.i * ca.i;
- ct.i = z2.r * ca.i + z2.i * ca.r;
- ca.r = ct.r;
- ca.i = ct.i;
-
- cn *= n;
- n += 1.0;
- cn /= n;
- n += 1.0;
- b = cn/n;
-
- ct.r *= b;
- ct.i *= b;
- sum.r += ct.r;
- sum.i += ct.i;
- b = fabsf(ct.r) + fabsf(ct.i);
- }
-while( b > MACHEPF );
-w->r = sum.r;
-w->i = sum.i;
-return;
-}
-*/
-
-
-ca.r = x;
-ca.i = y;
-
-ct.r = -ca.i; /* iz */
-ct.i = ca.r;
-
- /* sqrt( 1 - z*z) */
-/* cmul( &ca, &ca, &zz ) */
-zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */
-zz.i = 2.0f * ca.r * ca.i;
-
-zz.r = 1.0f - zz.r;
-zz.i = -zz.i;
-csqrtf( &zz, &z2 );
-
-caddf( &z2, &ct, &zz );
-clogf( &zz, &zz );
-w->r = zz.i; /* mult by 1/i = -i */
-w->i = -zz.r;
-return;
-}
- /* cacosf()
- *
- * Complex circular arc cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * void cacosf();
- * cmplxf z, w;
- *
- * cacosf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * w = arccos z = PI/2 - arcsin z.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 9.2e-6 1.2e-6
- *
- */
-
-void cacosf( z, w )
-cmplxf *z, *w;
-{
-
-casinf( z, w );
-w->r = PIO2F - w->r;
-w->i = -w->i;
-}
- /* catan()
- *
- * Complex circular arc tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void catan();
- * cmplxf z, w;
- *
- * catan( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- * 1 ( 2x )
- * Re w = - arctan(-----------) + k PI
- * 2 ( 2 2)
- * (1 - x - y )
- *
- * ( 2 2)
- * 1 (x + (y+1) )
- * Im w = - log(------------)
- * 4 ( 2 2)
- * (x + (y-1) )
- *
- * Where k is an arbitrary integer.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 2.3e-6 5.2e-8
- *
- */
-
-void catanf( z, w )
-cmplxf *z, *w;
-{
-float a, t, x, x2, y;
-
-x = z->r;
-y = z->i;
-
-if( (x == 0.0f) && (y > 1.0f) )
- goto ovrf;
-
-x2 = x * x;
-a = 1.0f - x2 - (y * y);
-if( a == 0.0f )
- goto ovrf;
-
-#if ANSIC
-t = 0.5f * atan2f( 2.0f * x, a );
-#else
-t = 0.5f * atan2f( a, 2.0f * x );
-#endif
-w->r = redupif( t );
-
-t = y - 1.0f;
-a = x2 + (t * t);
-if( a == 0.0f )
- goto ovrf;
-
-t = y + 1.0f;
-a = (x2 + (t * t))/a;
-w->i = 0.25f*logf(a);
-return;
-
-ovrf:
-mtherr( "catanf", OVERFLOW );
-w->r = MAXNUMF;
-w->i = MAXNUMF;
-}
diff --git a/libm/float/cmplxf.c b/libm/float/cmplxf.c
deleted file mode 100644
index 949b94e3d..000000000
--- a/libm/float/cmplxf.c
+++ /dev/null
@@ -1,407 +0,0 @@
-/* cmplxf.c
- *
- * Complex number arithmetic
- *
- *
- *
- * SYNOPSIS:
- *
- * typedef struct {
- * float r; real part
- * float i; imaginary part
- * }cmplxf;
- *
- * cmplxf *a, *b, *c;
- *
- * caddf( a, b, c ); c = b + a
- * csubf( a, b, c ); c = b - a
- * cmulf( a, b, c ); c = b * a
- * cdivf( a, b, c ); c = b / a
- * cnegf( c ); c = -c
- * cmovf( b, c ); c = b
- *
- *
- *
- * DESCRIPTION:
- *
- * Addition:
- * c.r = b.r + a.r
- * c.i = b.i + a.i
- *
- * Subtraction:
- * c.r = b.r - a.r
- * c.i = b.i - a.i
- *
- * Multiplication:
- * c.r = b.r * a.r - b.i * a.i
- * c.i = b.r * a.i + b.i * a.r
- *
- * Division:
- * d = a.r * a.r + a.i * a.i
- * c.r = (b.r * a.r + b.i * a.i)/d
- * c.i = (b.i * a.r - b.r * a.i)/d
- * ACCURACY:
- *
- * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
- * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had
- * peak relative error 8.3e-17, rms 2.1e-17.
- *
- * Tests in the rectangle {-10,+10}:
- * Relative error:
- * arithmetic function # trials peak rms
- * IEEE cadd 30000 5.9e-8 2.6e-8
- * IEEE csub 30000 6.0e-8 2.6e-8
- * IEEE cmul 30000 1.1e-7 3.7e-8
- * IEEE cdiv 30000 2.1e-7 5.7e-8
- */
- /* cmplx.c
- * complex number arithmetic
- */
-
-
-/*
-Cephes Math Library Release 2.1: December, 1988
-Copyright 1984, 1987, 1988 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-extern float MAXNUMF, MACHEPF, PIF, PIO2F;
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-#ifdef ANSIC
-float sqrtf(float), frexpf(float, int *);
-float ldexpf(float, int);
-float cabsf(cmplxf *), atan2f(float, float), cosf(float), sinf(float);
-#else
-float sqrtf(), frexpf(), ldexpf();
-float cabsf(), atan2f(), cosf(), sinf();
-#endif
-/*
-typedef struct
- {
- float r;
- float i;
- }cmplxf;
-*/
-cmplxf czerof = {0.0, 0.0};
-extern cmplxf czerof;
-cmplxf conef = {1.0, 0.0};
-extern cmplxf conef;
-
-/* c = b + a */
-
-void caddf( a, b, c )
-register cmplxf *a, *b;
-cmplxf *c;
-{
-
-c->r = b->r + a->r;
-c->i = b->i + a->i;
-}
-
-
-/* c = b - a */
-
-void csubf( a, b, c )
-register cmplxf *a, *b;
-cmplxf *c;
-{
-
-c->r = b->r - a->r;
-c->i = b->i - a->i;
-}
-
-/* c = b * a */
-
-void cmulf( a, b, c )
-register cmplxf *a, *b;
-cmplxf *c;
-{
-register float y;
-
-y = b->r * a->r - b->i * a->i;
-c->i = b->r * a->i + b->i * a->r;
-c->r = y;
-}
-
-
-
-/* c = b / a */
-
-void cdivf( a, b, c )
-register cmplxf *a, *b;
-cmplxf *c;
-{
-float y, p, q, w;
-
-
-y = a->r * a->r + a->i * a->i;
-p = b->r * a->r + b->i * a->i;
-q = b->i * a->r - b->r * a->i;
-
-if( y < 1.0f )
- {
- w = MAXNUMF * y;
- if( (fabsf(p) > w) || (fabsf(q) > w) || (y == 0.0f) )
- {
- c->r = MAXNUMF;
- c->i = MAXNUMF;
- mtherr( "cdivf", OVERFLOW );
- return;
- }
- }
-c->r = p/y;
-c->i = q/y;
-}
-
-
-/* b = a */
-
-void cmovf( a, b )
-register short *a, *b;
-{
-int i;
-
-
-i = 8;
-do
- *b++ = *a++;
-while( --i );
-}
-
-
-void cnegf( a )
-register cmplxf *a;
-{
-
-a->r = -a->r;
-a->i = -a->i;
-}
-
-/* cabsf()
- *
- * Complex absolute value
- *
- *
- *
- * SYNOPSIS:
- *
- * float cabsf();
- * cmplxf z;
- * float a;
- *
- * a = cabsf( &z );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy
- *
- * then
- *
- * a = sqrt( x**2 + y**2 ).
- *
- * Overflow and underflow are avoided by testing the magnitudes
- * of x and y before squaring. If either is outside half of
- * the floating point full scale range, both are rescaled.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.2e-7 3.4e-8
- */
-
-
-/*
-Cephes Math Library Release 2.1: January, 1989
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-/*
-typedef struct
- {
- float r;
- float i;
- }cmplxf;
-*/
-/* square root of max and min numbers */
-#define SMAX 1.3043817825332782216E+19
-#define SMIN 7.6664670834168704053E-20
-#define PREC 12
-#define MAXEXPF 128
-
-
-#define SMAXT (2.0f * SMAX)
-#define SMINT (0.5f * SMIN)
-
-float cabsf( z )
-register cmplxf *z;
-{
-float x, y, b, re, im;
-int ex, ey, e;
-
-re = fabsf( z->r );
-im = fabsf( z->i );
-
-if( re == 0.0f )
- {
- return( im );
- }
-if( im == 0.0f )
- {
- return( re );
- }
-
-/* Get the exponents of the numbers */
-x = frexpf( re, &ex );
-y = frexpf( im, &ey );
-
-/* Check if one number is tiny compared to the other */
-e = ex - ey;
-if( e > PREC )
- return( re );
-if( e < -PREC )
- return( im );
-
-/* Find approximate exponent e of the geometric mean. */
-e = (ex + ey) >> 1;
-
-/* Rescale so mean is about 1 */
-x = ldexpf( re, -e );
-y = ldexpf( im, -e );
-
-/* Hypotenuse of the right triangle */
-b = sqrtf( x * x + y * y );
-
-/* Compute the exponent of the answer. */
-y = frexpf( b, &ey );
-ey = e + ey;
-
-/* Check it for overflow and underflow. */
-if( ey > MAXEXPF )
- {
- mtherr( "cabsf", OVERFLOW );
- return( MAXNUMF );
- }
-if( ey < -MAXEXPF )
- return(0.0f);
-
-/* Undo the scaling */
-b = ldexpf( b, e );
-return( b );
-}
- /* csqrtf()
- *
- * Complex square root
- *
- *
- *
- * SYNOPSIS:
- *
- * void csqrtf();
- * cmplxf z, w;
- *
- * csqrtf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy, r = |z|, then
- *
- * 1/2
- * Im w = [ (r - x)/2 ] ,
- *
- * Re w = y / 2 Im w.
- *
- *
- * Note that -w is also a square root of z. The solution
- * reported is always in the upper half plane.
- *
- * Because of the potential for cancellation error in r - x,
- * the result is sharpened by doing a Heron iteration
- * (see sqrt.c) in complex arithmetic.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 100000 1.8e-7 4.2e-8
- *
- */
-
-
-void csqrtf( z, w )
-cmplxf *z, *w;
-{
-cmplxf q, s;
-float x, y, r, t;
-
-x = z->r;
-y = z->i;
-
-if( y == 0.0f )
- {
- if( x < 0.0f )
- {
- w->r = 0.0f;
- w->i = sqrtf(-x);
- return;
- }
- else
- {
- w->r = sqrtf(x);
- w->i = 0.0f;
- return;
- }
- }
-
-if( x == 0.0f )
- {
- r = fabsf(y);
- r = sqrtf(0.5f*r);
- if( y > 0 )
- w->r = r;
- else
- w->r = -r;
- w->i = r;
- return;
- }
-
-/* Approximate sqrt(x^2+y^2) - x = y^2/2x - y^4/24x^3 + ... .
- * The relative error in the first term is approximately y^2/12x^2 .
- */
-if( (fabsf(y) < fabsf(0.015f*x))
- && (x > 0) )
- {
- t = 0.25f*y*(y/x);
- }
-else
- {
- r = cabsf(z);
- t = 0.5f*(r - x);
- }
-
-r = sqrtf(t);
-q.i = r;
-q.r = 0.5f*y/r;
-
-/* Heron iteration in complex arithmetic:
- * q = (q + z/q)/2
- */
-cdivf( &q, z, &s );
-caddf( &q, &s, w );
-w->r *= 0.5f;
-w->i *= 0.5f;
-}
-
diff --git a/libm/float/constf.c b/libm/float/constf.c
deleted file mode 100644
index bf6b6f657..000000000
--- a/libm/float/constf.c
+++ /dev/null
@@ -1,20 +0,0 @@
-
-#ifdef DEC
-/* MAXNUMF = 2^127 * (1 - 2^-24) */
-float MAXNUMF = 1.7014117331926442990585209174225846272e38;
-float MAXLOGF = 88.02969187150841;
-float MINLOGF = -88.7228391116729996; /* log(2^-128) */
-#else
-/* MAXNUMF = 2^128 * (1 - 2^-24) */
-float MAXNUMF = 3.4028234663852885981170418348451692544e38;
-float MAXLOGF = 88.72283905206835;
-float MINLOGF = -103.278929903431851103; /* log(2^-149) */
-#endif
-
-float LOG2EF = 1.44269504088896341;
-float LOGE2F = 0.693147180559945309;
-float SQRTHF = 0.707106781186547524;
-float PIF = 3.141592653589793238;
-float PIO2F = 1.5707963267948966192;
-float PIO4F = 0.7853981633974483096;
-float MACHEPF = 5.9604644775390625E-8;
diff --git a/libm/float/coshf.c b/libm/float/coshf.c
deleted file mode 100644
index 2b44fdeb3..000000000
--- a/libm/float/coshf.c
+++ /dev/null
@@ -1,67 +0,0 @@
-/* coshf.c
- *
- * Hyperbolic cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, coshf();
- *
- * y = coshf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic cosine of argument in the range MINLOGF to
- * MAXLOGF.
- *
- * cosh(x) = ( exp(x) + exp(-x) )/2.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-MAXLOGF 100000 1.2e-7 2.8e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * coshf overflow |x| > MAXLOGF MAXNUMF
- *
- *
- */
-
-/* cosh.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1985, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-extern float MAXLOGF, MAXNUMF;
-
-float expf(float);
-
-float coshf(float xx)
-{
-float x, y;
-
-x = xx;
-if( x < 0 )
- x = -x;
-if( x > MAXLOGF )
- {
- mtherr( "coshf", OVERFLOW );
- return( MAXNUMF );
- }
-y = expf(x);
-y = y + 1.0/y;
-return( 0.5*y );
-}
diff --git a/libm/float/dawsnf.c b/libm/float/dawsnf.c
deleted file mode 100644
index d00607719..000000000
--- a/libm/float/dawsnf.c
+++ /dev/null
@@ -1,168 +0,0 @@
-/* dawsnf.c
- *
- * Dawson's Integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, dawsnf();
- *
- * y = dawsnf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- * x
- * -
- * 2 | | 2
- * dawsn(x) = exp( -x ) | exp( t ) dt
- * | |
- * -
- * 0
- *
- * Three different rational approximations are employed, for
- * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,10 50000 4.4e-7 6.3e-8
- *
- *
- */
-
-/* dawsn.c */
-
-
-/*
-Cephes Math Library Release 2.1: January, 1989
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-/* Dawson's integral, interval 0 to 3.25 */
-static float AN[10] = {
- 1.13681498971755972054E-11,
- 8.49262267667473811108E-10,
- 1.94434204175553054283E-8,
- 9.53151741254484363489E-7,
- 3.07828309874913200438E-6,
- 3.52513368520288738649E-4,
--8.50149846724410912031E-4,
- 4.22618223005546594270E-2,
--9.17480371773452345351E-2,
- 9.99999999999999994612E-1,
-};
-static float AD[11] = {
- 2.40372073066762605484E-11,
- 1.48864681368493396752E-9,
- 5.21265281010541664570E-8,
- 1.27258478273186970203E-6,
- 2.32490249820789513991E-5,
- 3.25524741826057911661E-4,
- 3.48805814657162590916E-3,
- 2.79448531198828973716E-2,
- 1.58874241960120565368E-1,
- 5.74918629489320327824E-1,
- 1.00000000000000000539E0,
-};
-
-/* interval 3.25 to 6.25 */
-static float BN[11] = {
- 5.08955156417900903354E-1,
--2.44754418142697847934E-1,
- 9.41512335303534411857E-2,
--2.18711255142039025206E-2,
- 3.66207612329569181322E-3,
--4.23209114460388756528E-4,
- 3.59641304793896631888E-5,
--2.14640351719968974225E-6,
- 9.10010780076391431042E-8,
--2.40274520828250956942E-9,
- 3.59233385440928410398E-11,
-};
-static float BD[10] = {
-/* 1.00000000000000000000E0,*/
--6.31839869873368190192E-1,
- 2.36706788228248691528E-1,
--5.31806367003223277662E-2,
- 8.48041718586295374409E-3,
--9.47996768486665330168E-4,
- 7.81025592944552338085E-5,
--4.55875153252442634831E-6,
- 1.89100358111421846170E-7,
--4.91324691331920606875E-9,
- 7.18466403235734541950E-11,
-};
-
-/* 6.25 to infinity */
-static float CN[5] = {
--5.90592860534773254987E-1,
- 6.29235242724368800674E-1,
--1.72858975380388136411E-1,
- 1.64837047825189632310E-2,
--4.86827613020462700845E-4,
-};
-static float CD[5] = {
-/* 1.00000000000000000000E0,*/
--2.69820057197544900361E0,
- 1.73270799045947845857E0,
--3.93708582281939493482E-1,
- 3.44278924041233391079E-2,
--9.73655226040941223894E-4,
-};
-
-
-extern float PIF, MACHEPF;
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-#ifdef ANSIC
-float polevlf(float, float *, int);
-float p1evlf(float, float *, int);
-#else
-float polevlf(), p1evlf();
-#endif
-
-float dawsnf( float xxx )
-{
-float xx, x, y;
-int sign;
-
-xx = xxx;
-sign = 1;
-if( xx < 0.0 )
- {
- sign = -1;
- xx = -xx;
- }
-
-if( xx < 3.25 )
- {
- x = xx*xx;
- y = xx * polevlf( x, AN, 9 )/polevlf( x, AD, 10 );
- return( sign * y );
- }
-
-
-x = 1.0/(xx*xx);
-
-if( xx < 6.25 )
- {
- y = 1.0/xx + x * polevlf( x, BN, 10) / (p1evlf( x, BD, 10) * xx);
- return( sign * 0.5 * y );
- }
-
-
-if( xx > 1.0e9 )
- return( (sign * 0.5)/xx );
-
-/* 6.25 to infinity */
-y = 1.0/xx + x * polevlf( x, CN, 4) / (p1evlf( x, CD, 5) * xx);
-return( sign * 0.5 * y );
-}
diff --git a/libm/float/ellief.c b/libm/float/ellief.c
deleted file mode 100644
index 5c3f822df..000000000
--- a/libm/float/ellief.c
+++ /dev/null
@@ -1,115 +0,0 @@
-/* ellief.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellief();
- *
- * y = ellief( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 4.5e-7 7.4e-8
- *
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Incomplete elliptic integral of second kind */
-
-#include <math.h>
-
-extern float PIF, PIO2F, MACHEPF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float sqrtf(float), logf(float), sinf(float), tanf(float), atanf(float);
-float ellpef(float), ellpkf(float);
-#else
-float sqrtf(), logf(), sinf(), tanf(), atanf();
-float ellpef(), ellpkf();
-#endif
-
-
-float ellief( float phia, float ma )
-{
-float phi, m, a, b, c, e, temp;
-float lphi, t;
-int d, mod;
-
-phi = phia;
-m = ma;
-if( m == 0.0 )
- return( phi );
-if( m == 1.0 )
- return( sinf(phi) );
-lphi = phi;
-if( lphi < 0.0 )
- lphi = -lphi;
-a = 1.0;
-b = 1.0 - m;
-b = sqrtf(b);
-c = sqrtf(m);
-d = 1;
-e = 0.0;
-t = tanf( lphi );
-mod = (lphi + PIO2F)/PIF;
-
-while( fabsf(c/a) > MACHEPF )
- {
- temp = b/a;
- lphi = lphi + atanf(t*temp) + mod * PIF;
- mod = (lphi + PIO2F)/PIF;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = 0.5 * ( a - b );
- temp = sqrtf( a * b );
- a = 0.5 * ( a + b );
- b = temp;
- d += d;
- e += c * sinf(lphi);
- }
-
-b = 1.0 - m;
-temp = ellpef(b)/ellpkf(b);
-temp *= (atanf(t) + mod * PIF)/(d * a);
-temp += e;
-if( phi < 0.0 )
- temp = -temp;
-return( temp );
-}
diff --git a/libm/float/ellikf.c b/libm/float/ellikf.c
deleted file mode 100644
index 8ec890926..000000000
--- a/libm/float/ellikf.c
+++ /dev/null
@@ -1,113 +0,0 @@
-/* ellikf.c
- *
- * Incomplete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellikf();
- *
- * y = ellikf( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * phi
- * -
- * | |
- * | dt
- * F(phi\m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 2.9e-7 5.8e-8
- *
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Incomplete elliptic integral of first kind */
-
-#include <math.h>
-extern float PIF, PIO2F, MACHEPF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float sqrtf(float), logf(float), sinf(float), tanf(float), atanf(float);
-#else
-float sqrtf(), logf(), sinf(), tanf(), atanf();
-#endif
-
-
-float ellikf( float phia, float ma )
-{
-float phi, m, a, b, c, temp;
-float t;
-int d, mod, sign;
-
-phi = phia;
-m = ma;
-if( m == 0.0 )
- return( phi );
-if( phi < 0.0 )
- {
- phi = -phi;
- sign = -1;
- }
-else
- sign = 0;
-a = 1.0;
-b = 1.0 - m;
-if( b == 0.0 )
- return( logf( tanf( 0.5*(PIO2F + phi) ) ) );
-b = sqrtf(b);
-c = sqrtf(m);
-d = 1;
-t = tanf( phi );
-mod = (phi + PIO2F)/PIF;
-
-while( fabsf(c/a) > MACHEPF )
- {
- temp = b/a;
- phi = phi + atanf(t*temp) + mod * PIF;
- mod = (phi + PIO2F)/PIF;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = ( a - b )/2.0;
- temp = sqrtf( a * b );
- a = ( a + b )/2.0;
- b = temp;
- d += d;
- }
-
-temp = (atanf(t) + mod * PIF)/(d * a);
-if( sign < 0 )
- temp = -temp;
-return( temp );
-}
diff --git a/libm/float/ellpef.c b/libm/float/ellpef.c
deleted file mode 100644
index 645bc55ba..000000000
--- a/libm/float/ellpef.c
+++ /dev/null
@@ -1,105 +0,0 @@
-/* ellpef.c
- *
- * Complete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float m1, y, ellpef();
- *
- * y = ellpef( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * pi/2
- * -
- * | | 2
- * E(m) = | sqrt( 1 - m sin t ) dt
- * | |
- * -
- * 0
- *
- * Where m = 1 - m1, using the approximation
- *
- * P(x) - x log x Q(x).
- *
- * Though there are no singularities, the argument m1 is used
- * rather than m for compatibility with ellpk().
- *
- * E(1) = 1; E(0) = pi/2.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 1 30000 1.1e-7 3.9e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpef domain x<0, x>1 0.0
- *
- */
-
-/* ellpe.c */
-
-/* Elliptic integral of second kind */
-
-/*
-Cephes Math Library, Release 2.1: February, 1989
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-
-static float P[] = {
- 1.53552577301013293365E-4,
- 2.50888492163602060990E-3,
- 8.68786816565889628429E-3,
- 1.07350949056076193403E-2,
- 7.77395492516787092951E-3,
- 7.58395289413514708519E-3,
- 1.15688436810574127319E-2,
- 2.18317996015557253103E-2,
- 5.68051945617860553470E-2,
- 4.43147180560990850618E-1,
- 1.00000000000000000299E0
-};
-static float Q[] = {
- 3.27954898576485872656E-5,
- 1.00962792679356715133E-3,
- 6.50609489976927491433E-3,
- 1.68862163993311317300E-2,
- 2.61769742454493659583E-2,
- 3.34833904888224918614E-2,
- 4.27180926518931511717E-2,
- 5.85936634471101055642E-2,
- 9.37499997197644278445E-2,
- 2.49999999999888314361E-1
-};
-
-float polevlf(float, float *, int), logf(float);
-float ellpef( float xx)
-{
-float x;
-
-x = xx;
-if( (x <= 0.0) || (x > 1.0) )
- {
- if( x == 0.0 )
- return( 1.0 );
- mtherr( "ellpef", DOMAIN );
- return( 0.0 );
- }
-return( polevlf(x,P,10) - logf(x) * (x * polevlf(x,Q,9)) );
-}
diff --git a/libm/float/ellpjf.c b/libm/float/ellpjf.c
deleted file mode 100644
index 552f5ffe4..000000000
--- a/libm/float/ellpjf.c
+++ /dev/null
@@ -1,161 +0,0 @@
-/* ellpjf.c
- *
- * Jacobian Elliptic Functions
- *
- *
- *
- * SYNOPSIS:
- *
- * float u, m, sn, cn, dn, phi;
- * int ellpj();
- *
- * ellpj( u, m, _&sn, _&cn, _&dn, _&phi );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
- * and dn(u|m) of parameter m between 0 and 1, and real
- * argument u.
- *
- * These functions are periodic, with quarter-period on the
- * real axis equal to the complete elliptic integral
- * ellpk(1.0-m).
- *
- * Relation to incomplete elliptic integral:
- * If u = ellik(phi,m), then sn(u|m) = sin(phi),
- * and cn(u|m) = cos(phi). Phi is called the amplitude of u.
- *
- * Computation is by means of the arithmetic-geometric mean
- * algorithm, except when m is within 1e-9 of 0 or 1. In the
- * latter case with m close to 1, the approximation applies
- * only for phi < pi/2.
- *
- * ACCURACY:
- *
- * Tested at random points with u between 0 and 10, m between
- * 0 and 1.
- *
- * Absolute error (* = relative error):
- * arithmetic function # trials peak rms
- * IEEE sn 10000 1.7e-6 2.2e-7
- * IEEE cn 10000 1.6e-6 2.2e-7
- * IEEE dn 10000 1.4e-3 1.9e-5
- * IEEE phi 10000 3.9e-7* 6.7e-8*
- *
- * Peak error observed in consistency check using addition
- * theorem for sn(u+v) was 4e-16 (absolute). Also tested by
- * the above relation to the incomplete elliptic integral.
- * Accuracy deteriorates when u is large.
- *
- */
-
-/* ellpj.c */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-extern float PIO2F, MACHEPF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float sqrtf(float), sinf(float), cosf(float), asinf(float), tanhf(float);
-float sinhf(float), coshf(float), atanf(float), expf(float);
-#else
-float sqrtf(), sinf(), cosf(), asinf(), tanhf();
-float sinhf(), coshf(), atanf(), expf();
-#endif
-
-int ellpjf( float uu, float mm,
- float *sn, float *cn, float *dn, float *ph )
-{
-float u, m, ai, b, phi, t, twon;
-float a[10], c[10];
-int i;
-
-u = uu;
-m = mm;
-/* Check for special cases */
-
-if( m < 0.0 || m > 1.0 )
- {
- mtherr( "ellpjf", DOMAIN );
- return(-1);
- }
-if( m < 1.0e-5 )
- {
- t = sinf(u);
- b = cosf(u);
- ai = 0.25 * m * (u - t*b);
- *sn = t - ai*b;
- *cn = b + ai*t;
- *ph = u - ai;
- *dn = 1.0 - 0.5*m*t*t;
- return(0);
- }
-
-if( m >= 0.99999 )
- {
- ai = 0.25 * (1.0-m);
- b = coshf(u);
- t = tanhf(u);
- phi = 1.0/b;
- twon = b * sinhf(u);
- *sn = t + ai * (twon - u)/(b*b);
- *ph = 2.0*atanf(expf(u)) - PIO2F + ai*(twon - u)/b;
- ai *= t * phi;
- *cn = phi - ai * (twon - u);
- *dn = phi + ai * (twon + u);
- return(0);
- }
-
-
-/* A. G. M. scale */
-a[0] = 1.0;
-b = sqrtf(1.0 - m);
-c[0] = sqrtf(m);
-twon = 1.0;
-i = 0;
-
-while( fabsf( (c[i]/a[i]) ) > MACHEPF )
- {
- if( i > 8 )
- {
-/* mtherr( "ellpjf", OVERFLOW );*/
- break;
- }
- ai = a[i];
- ++i;
- c[i] = 0.5 * ( ai - b );
- t = sqrtf( ai * b );
- a[i] = 0.5 * ( ai + b );
- b = t;
- twon += twon;
- }
-
-
-/* backward recurrence */
-phi = twon * a[i] * u;
-do
- {
- t = c[i] * sinf(phi) / a[i];
- b = phi;
- phi = 0.5 * (asinf(t) + phi);
- }
-while( --i );
-
-*sn = sinf(phi);
-t = cosf(phi);
-*cn = t;
-*dn = t/cosf(phi-b);
-*ph = phi;
-return(0);
-}
diff --git a/libm/float/ellpkf.c b/libm/float/ellpkf.c
deleted file mode 100644
index 2cc13d90a..000000000
--- a/libm/float/ellpkf.c
+++ /dev/null
@@ -1,128 +0,0 @@
-/* ellpkf.c
- *
- * Complete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float m1, y, ellpkf();
- *
- * y = ellpkf( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * pi/2
- * -
- * | |
- * | dt
- * K(m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * where m = 1 - m1, using the approximation
- *
- * P(x) - log x Q(x).
- *
- * The argument m1 is used rather than m so that the logarithmic
- * singularity at m = 1 will be shifted to the origin; this
- * preserves maximum accuracy.
- *
- * K(0) = pi/2.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1 30000 1.3e-7 3.4e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpkf domain x<0, x>1 0.0
- *
- */
-
-/* ellpk.c */
-
-
-/*
-Cephes Math Library, Release 2.0: April, 1987
-Copyright 1984, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-static float P[] =
-{
- 1.37982864606273237150E-4,
- 2.28025724005875567385E-3,
- 7.97404013220415179367E-3,
- 9.85821379021226008714E-3,
- 6.87489687449949877925E-3,
- 6.18901033637687613229E-3,
- 8.79078273952743772254E-3,
- 1.49380448916805252718E-2,
- 3.08851465246711995998E-2,
- 9.65735902811690126535E-2,
- 1.38629436111989062502E0
-};
-
-static float Q[] =
-{
- 2.94078955048598507511E-5,
- 9.14184723865917226571E-4,
- 5.94058303753167793257E-3,
- 1.54850516649762399335E-2,
- 2.39089602715924892727E-2,
- 3.01204715227604046988E-2,
- 3.73774314173823228969E-2,
- 4.88280347570998239232E-2,
- 7.03124996963957469739E-2,
- 1.24999999999870820058E-1,
- 4.99999999999999999821E-1
-};
-static float C1 = 1.3862943611198906188E0; /* log(4) */
-
-extern float MACHEPF, MAXNUMF;
-
-float polevlf(float, float *, int);
-float p1evlf(float, float *, int);
-float logf(float);
-float ellpkf(float xx)
-{
-float x;
-
-x = xx;
-if( (x < 0.0) || (x > 1.0) )
- {
- mtherr( "ellpkf", DOMAIN );
- return( 0.0 );
- }
-
-if( x > MACHEPF )
- {
- return( polevlf(x,P,10) - logf(x) * polevlf(x,Q,10) );
- }
-else
- {
- if( x == 0.0 )
- {
- mtherr( "ellpkf", SING );
- return( MAXNUMF );
- }
- else
- {
- return( C1 - 0.5 * logf(x) );
- }
- }
-}
diff --git a/libm/float/exp10f.c b/libm/float/exp10f.c
deleted file mode 100644
index c7c62c567..000000000
--- a/libm/float/exp10f.c
+++ /dev/null
@@ -1,115 +0,0 @@
-/* exp10f.c
- *
- * Base 10 exponential function
- * (Common antilogarithm)
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, exp10f();
- *
- * y = exp10f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns 10 raised to the x power.
- *
- * Range reduction is accomplished by expressing the argument
- * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
- * A polynomial approximates 10**f.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -38,+38 100000 9.8e-8 2.8e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp10 underflow x < -MAXL10 0.0
- * exp10 overflow x > MAXL10 MAXNUM
- *
- * IEEE single arithmetic: MAXL10 = 38.230809449325611792.
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-static float P[] = {
- 2.063216740311022E-001,
- 5.420251702225484E-001,
- 1.171292686296281E+000,
- 2.034649854009453E+000,
- 2.650948748208892E+000,
- 2.302585167056758E+000
-};
-
-/*static float LOG102 = 3.01029995663981195214e-1;*/
-static float LOG210 = 3.32192809488736234787e0;
-static float LG102A = 3.00781250000000000000E-1;
-static float LG102B = 2.48745663981195213739E-4;
-static float MAXL10 = 38.230809449325611792;
-
-
-
-
-extern float MAXNUMF;
-
-float floorf(float), ldexpf(float, int), polevlf(float, float *, int);
-
-float exp10f(float xx)
-{
-float x, px, qx;
-short n;
-
-x = xx;
-if( x > MAXL10 )
- {
- mtherr( "exp10f", OVERFLOW );
- return( MAXNUMF );
- }
-
-if( x < -MAXL10 ) /* Would like to use MINLOG but can't */
- {
- mtherr( "exp10f", UNDERFLOW );
- return(0.0);
- }
-
-/* The following is necessary because range reduction blows up: */
-if( x == 0 )
- return(1.0);
-
-/* Express 10**x = 10**g 2**n
- * = 10**g 10**( n log10(2) )
- * = 10**( g + n log10(2) )
- */
-px = x * LOG210;
-qx = floorf( px + 0.5 );
-n = qx;
-x -= qx * LG102A;
-x -= qx * LG102B;
-
-/* rational approximation for exponential
- * of the fractional part:
- * 10**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) )
- */
-px = 1.0 + x * polevlf( x, P, 5 );
-
-/* multiply by power of 2 */
-x = ldexpf( px, n );
-
-return(x);
-}
diff --git a/libm/float/exp2f.c b/libm/float/exp2f.c
deleted file mode 100644
index 0de21decd..000000000
--- a/libm/float/exp2f.c
+++ /dev/null
@@ -1,116 +0,0 @@
-/* exp2f.c
- *
- * Base 2 exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, exp2f();
- *
- * y = exp2f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns 2 raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- * x k f
- * 2 = 2 2.
- *
- * A polynomial approximates 2**x in the basic range [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -127,+127 100000 1.7e-7 2.8e-8
- *
- *
- * See exp.c for comments on error amplification.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp underflow x < -MAXL2 0.0
- * exp overflow x > MAXL2 MAXNUMF
- *
- * For IEEE arithmetic, MAXL2 = 127.
- */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-
-#include <math.h>
-static char fname[] = {"exp2f"};
-
-static float P[] = {
- 1.535336188319500E-004,
- 1.339887440266574E-003,
- 9.618437357674640E-003,
- 5.550332471162809E-002,
- 2.402264791363012E-001,
- 6.931472028550421E-001
-};
-#define MAXL2 127.0
-#define MINL2 -127.0
-
-
-
-extern float MAXNUMF;
-
-float polevlf(float, float *, int), floorf(float), ldexpf(float, int);
-
-float exp2f( float xx )
-{
-float x, px;
-int i0;
-
-x = xx;
-if( x > MAXL2)
- {
- mtherr( fname, OVERFLOW );
- return( MAXNUMF );
- }
-
-if( x < MINL2 )
- {
- mtherr( fname, UNDERFLOW );
- return(0.0);
- }
-
-/* The following is necessary because range reduction blows up: */
-if( x == 0 )
- return(1.0);
-
-/* separate into integer and fractional parts */
-px = floorf(x);
-i0 = px;
-x = x - px;
-
-if( x > 0.5 )
- {
- i0 += 1;
- x -= 1.0;
- }
-
-/* rational approximation
- * exp2(x) = 1.0 + xP(x)
- */
-px = 1.0 + x * polevlf( x, P, 5 );
-
-/* scale by power of 2 */
-px = ldexpf( px, i0 );
-return(px);
-}
diff --git a/libm/float/expf.c b/libm/float/expf.c
deleted file mode 100644
index 073678b99..000000000
--- a/libm/float/expf.c
+++ /dev/null
@@ -1,122 +0,0 @@
-/* expf.c
- *
- * Exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, expf();
- *
- * y = expf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * A polynomial is used to approximate exp(f)
- * in the basic range [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +- MAXLOG 100000 1.7e-7 2.8e-8
- *
- *
- * Error amplification in the exponential function can be
- * a serious matter. The error propagation involves
- * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- * which shows that a 1 lsb error in representing X produces
- * a relative error of X times 1 lsb in the function.
- * While the routine gives an accurate result for arguments
- * that are exactly represented by a double precision
- * computer number, the result contains amplified roundoff
- * error for large arguments not exactly represented.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * expf underflow x < MINLOGF 0.0
- * expf overflow x > MAXLOGF MAXNUMF
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision exponential function.
- * test interval: [-0.5, +0.5]
- * trials: 80000
- * peak relative error: 7.6e-8
- * rms relative error: 2.8e-8
- */
-#include <math.h>
-extern float LOG2EF, MAXLOGF, MINLOGF, MAXNUMF;
-
-static float C1 = 0.693359375;
-static float C2 = -2.12194440e-4;
-
-
-
-float floorf( float ), ldexpf( float, int );
-
-float expf( float xx )
-{
-float x, z;
-int n;
-
-x = xx;
-
-
-if( x > MAXLOGF)
- {
- mtherr( "expf", OVERFLOW );
- return( MAXNUMF );
- }
-
-if( x < MINLOGF )
- {
- mtherr( "expf", UNDERFLOW );
- return(0.0);
- }
-
-/* Express e**x = e**g 2**n
- * = e**g e**( n loge(2) )
- * = e**( g + n loge(2) )
- */
-z = floorf( LOG2EF * x + 0.5 ); /* floor() truncates toward -infinity. */
-x -= z * C1;
-x -= z * C2;
-n = z;
-
-z = x * x;
-/* Theoretical peak relative error in [-0.5, +0.5] is 4.2e-9. */
-z =
-((((( 1.9875691500E-4 * x
- + 1.3981999507E-3) * x
- + 8.3334519073E-3) * x
- + 4.1665795894E-2) * x
- + 1.6666665459E-1) * x
- + 5.0000001201E-1) * z
- + x
- + 1.0;
-
-/* multiply by power of 2 */
-x = ldexpf( z, n );
-
-return( x );
-}
diff --git a/libm/float/expnf.c b/libm/float/expnf.c
deleted file mode 100644
index ebf0ccb3e..000000000
--- a/libm/float/expnf.c
+++ /dev/null
@@ -1,207 +0,0 @@
-/* expnf.c
- *
- * Exponential integral En
- *
- *
- *
- * SYNOPSIS:
- *
- * int n;
- * float x, y, expnf();
- *
- * y = expnf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the exponential integral
- *
- * inf.
- * -
- * | | -xt
- * | e
- * E (x) = | ---- dt.
- * n | n
- * | | t
- * -
- * 1
- *
- *
- * Both n and x must be nonnegative.
- *
- * The routine employs either a power series, a continued
- * fraction, or an asymptotic formula depending on the
- * relative values of n and x.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 10000 5.6e-7 1.2e-7
- *
- */
-
-/* expn.c */
-
-/* Cephes Math Library Release 2.2: July, 1992
- * Copyright 1985, 1992 by Stephen L. Moshier
- * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */
-
-#include <math.h>
-
-#define EUL 0.57721566490153286060
-#define BIG 16777216.
-extern float MAXNUMF, MACHEPF, MAXLOGF;
-#ifdef ANSIC
-float powf(float, float), gammaf(float), logf(float), expf(float);
-#else
-float powf(), gammaf(), logf(), expf();
-#endif
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-
-float expnf( int n, float xx )
-{
-float x, ans, r, t, yk, xk;
-float pk, pkm1, pkm2, qk, qkm1, qkm2;
-float psi, z;
-int i, k;
-static float big = BIG;
-
-
-x = xx;
-if( n < 0 )
- goto domerr;
-
-if( x < 0 )
- {
-domerr: mtherr( "expnf", DOMAIN );
- return( MAXNUMF );
- }
-
-if( x > MAXLOGF )
- return( 0.0 );
-
-if( x == 0.0 )
- {
- if( n < 2 )
- {
- mtherr( "expnf", SING );
- return( MAXNUMF );
- }
- else
- return( 1.0/(n-1.0) );
- }
-
-if( n == 0 )
- return( expf(-x)/x );
-
-/* expn.c */
-/* Expansion for large n */
-
-if( n > 5000 )
- {
- xk = x + n;
- yk = 1.0 / (xk * xk);
- t = n;
- ans = yk * t * (6.0 * x * x - 8.0 * t * x + t * t);
- ans = yk * (ans + t * (t - 2.0 * x));
- ans = yk * (ans + t);
- ans = (ans + 1.0) * expf( -x ) / xk;
- goto done;
- }
-
-if( x > 1.0 )
- goto cfrac;
-
-/* expn.c */
-
-/* Power series expansion */
-
-psi = -EUL - logf(x);
-for( i=1; i<n; i++ )
- psi = psi + 1.0/i;
-
-z = -x;
-xk = 0.0;
-yk = 1.0;
-pk = 1.0 - n;
-if( n == 1 )
- ans = 0.0;
-else
- ans = 1.0/pk;
-do
- {
- xk += 1.0;
- yk *= z/xk;
- pk += 1.0;
- if( pk != 0.0 )
- {
- ans += yk/pk;
- }
- if( ans != 0.0 )
- t = fabsf(yk/ans);
- else
- t = 1.0;
- }
-while( t > MACHEPF );
-k = xk;
-t = n;
-r = n - 1;
-ans = (powf(z, r) * psi / gammaf(t)) - ans;
-goto done;
-
-/* expn.c */
-/* continued fraction */
-cfrac:
-k = 1;
-pkm2 = 1.0;
-qkm2 = x;
-pkm1 = 1.0;
-qkm1 = x + n;
-ans = pkm1/qkm1;
-
-do
- {
- k += 1;
- if( k & 1 )
- {
- yk = 1.0;
- xk = n + (k-1)/2;
- }
- else
- {
- yk = x;
- xk = k/2;
- }
- pk = pkm1 * yk + pkm2 * xk;
- qk = qkm1 * yk + qkm2 * xk;
- if( qk != 0 )
- {
- r = pk/qk;
- t = fabsf( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-if( fabsf(pk) > big )
- {
- pkm2 *= MACHEPF;
- pkm1 *= MACHEPF;
- qkm2 *= MACHEPF;
- qkm1 *= MACHEPF;
- }
- }
-while( t > MACHEPF );
-
-ans *= expf( -x );
-
-done:
-return( ans );
-}
-
diff --git a/libm/float/facf.c b/libm/float/facf.c
deleted file mode 100644
index c69738897..000000000
--- a/libm/float/facf.c
+++ /dev/null
@@ -1,106 +0,0 @@
-/* facf.c
- *
- * Factorial function
- *
- *
- *
- * SYNOPSIS:
- *
- * float y, facf();
- * int i;
- *
- * y = facf( i );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns factorial of i = 1 * 2 * 3 * ... * i.
- * fac(0) = 1.0.
- *
- * Due to machine arithmetic bounds the largest value of
- * i accepted is 33 in single precision arithmetic.
- * Greater values, or negative ones,
- * produce an error message and return MAXNUM.
- *
- *
- *
- * ACCURACY:
- *
- * For i < 34 the values are simply tabulated, and have
- * full machine accuracy.
- *
- */
-
-/*
-Cephes Math Library Release 2.0: April, 1987
-Copyright 1984, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* Factorials of integers from 0 through 33 */
-static float factbl[] = {
- 1.00000000000000000000E0,
- 1.00000000000000000000E0,
- 2.00000000000000000000E0,
- 6.00000000000000000000E0,
- 2.40000000000000000000E1,
- 1.20000000000000000000E2,
- 7.20000000000000000000E2,
- 5.04000000000000000000E3,
- 4.03200000000000000000E4,
- 3.62880000000000000000E5,
- 3.62880000000000000000E6,
- 3.99168000000000000000E7,
- 4.79001600000000000000E8,
- 6.22702080000000000000E9,
- 8.71782912000000000000E10,
- 1.30767436800000000000E12,
- 2.09227898880000000000E13,
- 3.55687428096000000000E14,
- 6.40237370572800000000E15,
- 1.21645100408832000000E17,
- 2.43290200817664000000E18,
- 5.10909421717094400000E19,
- 1.12400072777760768000E21,
- 2.58520167388849766400E22,
- 6.20448401733239439360E23,
- 1.55112100433309859840E25,
- 4.03291461126605635584E26,
- 1.0888869450418352160768E28,
- 3.04888344611713860501504E29,
- 8.841761993739701954543616E30,
- 2.6525285981219105863630848E32,
- 8.22283865417792281772556288E33,
- 2.6313083693369353016721801216E35,
- 8.68331761881188649551819440128E36
-};
-#define MAXFACF 33
-
-extern float MAXNUMF;
-
-#ifdef ANSIC
-float facf( int i )
-#else
-float facf(i)
-int i;
-#endif
-{
-
-if( i < 0 )
- {
- mtherr( "facf", SING );
- return( MAXNUMF );
- }
-
-if( i > MAXFACF )
- {
- mtherr( "facf", OVERFLOW );
- return( MAXNUMF );
- }
-
-/* Get answer from table for small i. */
-return( factbl[i] );
-}
diff --git a/libm/float/fdtrf.c b/libm/float/fdtrf.c
deleted file mode 100644
index 5fdc6d81d..000000000
--- a/libm/float/fdtrf.c
+++ /dev/null
@@ -1,214 +0,0 @@
-/* fdtrf.c
- *
- * F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * float x, y, fdtrf();
- *
- * y = fdtrf( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from zero to x under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density). This is the density
- * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
- * variables having Chi square distributions with df1
- * and df2 degrees of freedom, respectively.
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
- *
- *
- * The arguments a and b are greater than zero, and x
- * x is nonnegative.
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 2.2e-5 1.1e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrf domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtrcf()
- *
- * Complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * float x, y, fdtrcf();
- *
- * y = fdtrcf( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from x to infinity under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density).
- *
- *
- * inf.
- * -
- * 1 | | a-1 b-1
- * 1-P(x) = ------ | t (1-t) dt
- * B(a,b) | |
- * -
- * x
- *
- * (See fdtr.c.)
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 7.3e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrcf domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtrif()
- *
- * Inverse of complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df1, df2, x, y, fdtrif();
- *
- * x = fdtrif( df1, df2, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the F density argument x such that the integral
- * from x to infinity of the F density is equal to the
- * given probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relations
- *
- * z = incbi( df2/2, df1/2, y )
- * x = df2 (1-z) / (df1 z).
- *
- * Note: the following relations hold for the inverse of
- * the uncomplemented F distribution:
- *
- * z = incbi( df1/2, df2/2, y )
- * x = df2 z / (df1 (1-z)).
- *
- *
- *
- * ACCURACY:
- *
- * arithmetic domain # trials peak rms
- * Absolute error:
- * IEEE 0,100 5000 4.0e-5 3.2e-6
- * Relative error:
- * IEEE 0,100 5000 1.2e-3 1.8e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrif domain y <= 0 or y > 1 0.0
- * v < 1
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-#ifdef ANSIC
-float incbetf(float, float, float);
-float incbif(float, float, float);
-#else
-float incbetf(), incbif();
-#endif
-
-float fdtrcf( int ia, int ib, float xx )
-{
-float x, a, b, w;
-
-x = xx;
-if( (ia < 1) || (ib < 1) || (x < 0.0) )
- {
- mtherr( "fdtrcf", DOMAIN );
- return( 0.0 );
- }
-a = ia;
-b = ib;
-w = b / (b + a * x);
-return( incbetf( 0.5*b, 0.5*a, w ) );
-}
-
-
-
-float fdtrf( int ia, int ib, int xx )
-{
-float x, a, b, w;
-
-x = xx;
-if( (ia < 1) || (ib < 1) || (x < 0.0) )
- {
- mtherr( "fdtrf", DOMAIN );
- return( 0.0 );
- }
-a = ia;
-b = ib;
-w = a * x;
-w = w / (b + w);
-return( incbetf( 0.5*a, 0.5*b, w) );
-}
-
-
-float fdtrif( int ia, int ib, float yy )
-{
-float y, a, b, w, x;
-
-y = yy;
-if( (ia < 1) || (ib < 1) || (y <= 0.0) || (y > 1.0) )
- {
- mtherr( "fdtrif", DOMAIN );
- return( 0.0 );
- }
-a = ia;
-b = ib;
-w = incbif( 0.5*b, 0.5*a, y );
-x = (b - b*w)/(a*w);
-return(x);
-}
diff --git a/libm/float/floorf.c b/libm/float/floorf.c
deleted file mode 100644
index 7a2f3530d..000000000
--- a/libm/float/floorf.c
+++ /dev/null
@@ -1,526 +0,0 @@
-/* ceilf()
- * floorf()
- * frexpf()
- * ldexpf()
- * signbitf()
- * isnanf()
- * isfinitef()
- *
- * Single precision floating point numeric utilities
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y;
- * float ceilf(), floorf(), frexpf(), ldexpf();
- * int signbit(), isnan(), isfinite();
- * int expnt, n;
- *
- * y = floorf(x);
- * y = ceilf(x);
- * y = frexpf( x, &expnt );
- * y = ldexpf( x, n );
- * n = signbit(x);
- * n = isnan(x);
- * n = isfinite(x);
- *
- *
- *
- * DESCRIPTION:
- *
- * All four routines return a single precision floating point
- * result.
- *
- * sfloor() returns the largest integer less than or equal to x.
- * It truncates toward minus infinity.
- *
- * sceil() returns the smallest integer greater than or equal
- * to x. It truncates toward plus infinity.
- *
- * sfrexp() extracts the exponent from x. It returns an integer
- * power of two to expnt and the significand between 0.5 and 1
- * to y. Thus x = y * 2**expn.
- *
- * ldexpf() multiplies x by 2**n.
- *
- * signbit(x) returns 1 if the sign bit of x is 1, else 0.
- *
- * These functions are part of the standard C run time library
- * for many but not all C compilers. The ones supplied are
- * written in C for either DEC or IEEE arithmetic. They should
- * be used only if your compiler library does not already have
- * them.
- *
- * The IEEE versions assume that denormal numbers are implemented
- * in the arithmetic. Some modifications will be required if
- * the arithmetic has abrupt rather than gradual underflow.
- */
-
-
-/*
-Cephes Math Library Release 2.1: December, 1988
-Copyright 1984, 1987, 1988 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-#ifdef DEC
-#undef DENORMAL
-#define DENORMAL 0
-#endif
-
-#ifdef UNK
-#undef UNK
-#if BIGENDIAN
-#define MIEEE 1
-#else
-#define IBMPC 1
-#endif
-/*
-char *unkmsg = "ceil(), floor(), frexp(), ldexp() must be rewritten!\n";
-*/
-#endif
-
-#define EXPMSK 0x807f
-#define MEXP 255
-#define NBITS 24
-
-
-extern float MAXNUMF; /* (2^24 - 1) * 2^103 */
-#ifdef ANSIC
-float floorf(float);
-#else
-float floorf();
-#endif
-
-float ceilf( float x )
-{
-float y;
-
-#ifdef UNK
-printf( "%s\n", unkmsg );
-return(0.0);
-#endif
-
-y = floorf( (float )x );
-if( y < x )
- y += 1.0;
-return(y);
-}
-
-
-
-
-/* Bit clearing masks: */
-
-static unsigned short bmask[] = {
-0xffff,
-0xfffe,
-0xfffc,
-0xfff8,
-0xfff0,
-0xffe0,
-0xffc0,
-0xff80,
-0xff00,
-0xfe00,
-0xfc00,
-0xf800,
-0xf000,
-0xe000,
-0xc000,
-0x8000,
-0x0000,
-};
-
-
-
-float floorf( float x )
-{
-unsigned short *p;
-union
- {
- float y;
- unsigned short i[2];
- } u;
-int e;
-
-#ifdef UNK
-printf( "%s\n", unkmsg );
-return(0.0);
-#endif
-
-u.y = x;
-/* find the exponent (power of 2) */
-#ifdef DEC
-p = &u.i[0];
-e = (( *p >> 7) & 0377) - 0201;
-p += 3;
-#endif
-
-#ifdef IBMPC
-p = &u.i[1];
-e = (( *p >> 7) & 0xff) - 0x7f;
-p -= 1;
-#endif
-
-#ifdef MIEEE
-p = &u.i[0];
-e = (( *p >> 7) & 0xff) - 0x7f;
-p += 1;
-#endif
-
-if( e < 0 )
- {
- if( u.y < 0 )
- return( -1.0 );
- else
- return( 0.0 );
- }
-
-e = (NBITS -1) - e;
-/* clean out 16 bits at a time */
-while( e >= 16 )
- {
-#ifdef IBMPC
- *p++ = 0;
-#endif
-
-#ifdef DEC
- *p-- = 0;
-#endif
-
-#ifdef MIEEE
- *p-- = 0;
-#endif
- e -= 16;
- }
-
-/* clear the remaining bits */
-if( e > 0 )
- *p &= bmask[e];
-
-if( (x < 0) && (u.y != x) )
- u.y -= 1.0;
-
-return(u.y);
-}
-
-
-
-float frexpf( float x, int *pw2 )
-{
-union
- {
- float y;
- unsigned short i[2];
- } u;
-int i, k;
-short *q;
-
-u.y = x;
-
-#ifdef UNK
-printf( "%s\n", unkmsg );
-return(0.0);
-#endif
-
-#ifdef IBMPC
-q = &u.i[1];
-#endif
-
-#ifdef DEC
-q = &u.i[0];
-#endif
-
-#ifdef MIEEE
-q = &u.i[0];
-#endif
-
-/* find the exponent (power of 2) */
-
-i = ( *q >> 7) & 0xff;
-if( i == 0 )
- {
- if( u.y == 0.0 )
- {
- *pw2 = 0;
- return(0.0);
- }
-/* Number is denormal or zero */
-#if DENORMAL
-/* Handle denormal number. */
- do
- {
- u.y *= 2.0;
- i -= 1;
- k = ( *q >> 7) & 0xff;
- }
- while( k == 0 );
- i = i + k;
-#else
- *pw2 = 0;
- return( 0.0 );
-#endif /* DENORMAL */
- }
-i -= 0x7e;
-*pw2 = i;
-*q &= 0x807f; /* strip all exponent bits */
-*q |= 0x3f00; /* mantissa between 0.5 and 1 */
-return( u.y );
-}
-
-
-
-
-
-float ldexpf( float x, int pw2 )
-{
-union
- {
- float y;
- unsigned short i[2];
- } u;
-short *q;
-int e;
-
-#ifdef UNK
-printf( "%s\n", unkmsg );
-return(0.0);
-#endif
-
-u.y = x;
-#ifdef DEC
-q = &u.i[0];
-#endif
-
-#ifdef IBMPC
-q = &u.i[1];
-#endif
-#ifdef MIEEE
-q = &u.i[0];
-#endif
-while( (e = ( *q >> 7) & 0xff) == 0 )
- {
- if( u.y == (float )0.0 )
- {
- return( 0.0 );
- }
-/* Input is denormal. */
- if( pw2 > 0 )
- {
- u.y *= 2.0;
- pw2 -= 1;
- }
- if( pw2 < 0 )
- {
- if( pw2 < -24 )
- return( 0.0 );
- u.y *= 0.5;
- pw2 += 1;
- }
- if( pw2 == 0 )
- return(u.y);
- }
-
-e += pw2;
-
-/* Handle overflow */
-if( e > MEXP )
- {
- return( MAXNUMF );
- }
-
-*q &= 0x807f;
-
-/* Handle denormalized results */
-if( e < 1 )
- {
-#if DENORMAL
- if( e < -24 )
- return( 0.0 );
- *q |= 0x80; /* Set LSB of exponent. */
- /* For denormals, significant bits may be lost even
- when dividing by 2. Construct 2^-(1-e) so the result
- is obtained with only one multiplication. */
- u.y *= ldexpf(1.0f, e - 1);
- return(u.y);
-#else
- return( 0.0 );
-#endif
- }
-*q |= (e & 0xff) << 7;
-return(u.y);
-}
-
-
-/* Return 1 if the sign bit of x is 1, else 0. */
-
-int signbitf(x)
-float x;
-{
-union
- {
- float f;
- short s[4];
- int i;
- } u;
-
-u.f = x;
-
-if( sizeof(int) == 4 )
- {
-#ifdef IBMPC
- return( u.i < 0 );
-#endif
-#ifdef DEC
- return( u.s[1] < 0 );
-#endif
-#ifdef MIEEE
- return( u.i < 0 );
-#endif
- }
-else
- {
-#ifdef IBMPC
- return( u.s[1] < 0 );
-#endif
-#ifdef DEC
- return( u.s[1] < 0 );
-#endif
-#ifdef MIEEE
- return( u.s[0] < 0 );
-#endif
- }
-}
-
-
-/* Return 1 if x is a number that is Not a Number, else return 0. */
-
-int isnanf(x)
-float x;
-{
-#ifdef NANS
-union
- {
- float f;
- unsigned short s[2];
- unsigned int i;
- } u;
-
-u.f = x;
-
-if( sizeof(int) == 4 )
- {
-#ifdef IBMPC
- if( ((u.i & 0x7f800000) == 0x7f800000)
- && ((u.i & 0x007fffff) != 0) )
- return 1;
-#endif
-#ifdef DEC
- if( (u.s[1] & 0x7f80) == 0)
- {
- if( (u.s[1] | u.s[0]) != 0 )
- return(1);
- }
-#endif
-#ifdef MIEEE
- if( ((u.i & 0x7f800000) == 0x7f800000)
- && ((u.i & 0x007fffff) != 0) )
- return 1;
-#endif
- return(0);
- }
-else
- { /* size int not 4 */
-#ifdef IBMPC
- if( (u.s[1] & 0x7f80) == 0x7f80)
- {
- if( ((u.s[1] & 0x007f) | u.s[0]) != 0 )
- return(1);
- }
-#endif
-#ifdef DEC
- if( (u.s[1] & 0x7f80) == 0)
- {
- if( (u.s[1] | u.s[0]) != 0 )
- return(1);
- }
-#endif
-#ifdef MIEEE
- if( (u.s[0] & 0x7f80) == 0x7f80)
- {
- if( ((u.s[0] & 0x000f) | u.s[1]) != 0 )
- return(1);
- }
-#endif
- return(0);
- } /* size int not 4 */
-
-#else
-/* No NANS. */
-return(0);
-#endif
-}
-
-
-/* Return 1 if x is not infinite and is not a NaN. */
-
-int isfinitef(x)
-float x;
-{
-#ifdef INFINITIES
-union
- {
- float f;
- unsigned short s[2];
- unsigned int i;
- } u;
-
-u.f = x;
-
-if( sizeof(int) == 4 )
- {
-#ifdef IBMPC
- if( (u.i & 0x7f800000) != 0x7f800000)
- return 1;
-#endif
-#ifdef DEC
- if( (u.s[1] & 0x7f80) == 0)
- {
- if( (u.s[1] | u.s[0]) != 0 )
- return(1);
- }
-#endif
-#ifdef MIEEE
- if( (u.i & 0x7f800000) != 0x7f800000)
- return 1;
-#endif
- return(0);
- }
-else
- {
-#ifdef IBMPC
- if( (u.s[1] & 0x7f80) != 0x7f80)
- return 1;
-#endif
-#ifdef DEC
- if( (u.s[1] & 0x7f80) == 0)
- {
- if( (u.s[1] | u.s[0]) != 0 )
- return(1);
- }
-#endif
-#ifdef MIEEE
- if( (u.s[0] & 0x7f80) != 0x7f80)
- return 1;
-#endif
- return(0);
- }
-#else
-/* No INFINITY. */
-return(1);
-#endif
-}
diff --git a/libm/float/fresnlf.c b/libm/float/fresnlf.c
deleted file mode 100644
index d6ae773b1..000000000
--- a/libm/float/fresnlf.c
+++ /dev/null
@@ -1,173 +0,0 @@
-/* fresnlf.c
- *
- * Fresnel integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, S, C;
- * void fresnlf();
- *
- * fresnlf( x, _&S, _&C );
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the Fresnel integrals
- *
- * x
- * -
- * | |
- * C(x) = | cos(pi/2 t**2) dt,
- * | |
- * -
- * 0
- *
- * x
- * -
- * | |
- * S(x) = | sin(pi/2 t**2) dt.
- * | |
- * -
- * 0
- *
- *
- * The integrals are evaluated by power series for small x.
- * For x >= 1 auxiliary functions f(x) and g(x) are employed
- * such that
- *
- * C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
- * S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
- *
- *
- *
- * ACCURACY:
- *
- * Relative error.
- *
- * Arithmetic function domain # trials peak rms
- * IEEE S(x) 0, 10 30000 1.1e-6 1.9e-7
- * IEEE C(x) 0, 10 30000 1.1e-6 2.0e-7
- */
-
-/*
-Cephes Math Library Release 2.1: January, 1989
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* S(x) for small x */
-static float sn[7] = {
- 1.647629463788700E-009,
--1.522754752581096E-007,
- 8.424748808502400E-006,
--3.120693124703272E-004,
- 7.244727626597022E-003,
--9.228055941124598E-002,
- 5.235987735681432E-001
-};
-
-/* C(x) for small x */
-static float cn[7] = {
- 1.416802502367354E-008,
--1.157231412229871E-006,
- 5.387223446683264E-005,
--1.604381798862293E-003,
- 2.818489036795073E-002,
--2.467398198317899E-001,
- 9.999999760004487E-001
-};
-
-
-/* Auxiliary function f(x) */
-static float fn[8] = {
--1.903009855649792E+012,
- 1.355942388050252E+011,
--4.158143148511033E+009,
- 7.343848463587323E+007,
--8.732356681548485E+005,
- 8.560515466275470E+003,
--1.032877601091159E+002,
- 2.999401847870011E+000
-};
-
-/* Auxiliary function g(x) */
-static float gn[8] = {
--1.860843997624650E+011,
- 1.278350673393208E+010,
--3.779387713202229E+008,
- 6.492611570598858E+006,
--7.787789623358162E+004,
- 8.602931494734327E+002,
--1.493439396592284E+001,
- 9.999841934744914E-001
-};
-
-
-extern float PIF, PIO2F;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float polevlf( float, float *, int );
-float cosf(float), sinf(float);
-#else
-float polevlf(), cosf(), sinf();
-#endif
-
-void fresnlf( float xxa, float *ssa, float *cca )
-{
-float f, g, cc, ss, c, s, t, u, x, x2;
-
-x = xxa;
-x = fabsf(x);
-x2 = x * x;
-if( x2 < 2.5625 )
- {
- t = x2 * x2;
- ss = x * x2 * polevlf( t, sn, 6);
- cc = x * polevlf( t, cn, 6);
- goto done;
- }
-
-if( x > 36974.0 )
- {
- cc = 0.5;
- ss = 0.5;
- goto done;
- }
-
-
-/* Asymptotic power series auxiliary functions
- * for large argument
- */
- x2 = x * x;
- t = PIF * x2;
- u = 1.0/(t * t);
- t = 1.0/t;
- f = 1.0 - u * polevlf( u, fn, 7);
- g = t * polevlf( u, gn, 7);
-
- t = PIO2F * x2;
- c = cosf(t);
- s = sinf(t);
- t = PIF * x;
- cc = 0.5 + (f * s - g * c)/t;
- ss = 0.5 - (f * c + g * s)/t;
-
-done:
-if( xxa < 0.0 )
- {
- cc = -cc;
- ss = -ss;
- }
-
-*cca = cc;
-*ssa = ss;
-#if !ANSIC
-return 0;
-#endif
-}
diff --git a/libm/float/gammaf.c b/libm/float/gammaf.c
deleted file mode 100644
index e8c4694c4..000000000
--- a/libm/float/gammaf.c
+++ /dev/null
@@ -1,423 +0,0 @@
-/* gammaf.c
- *
- * Gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, gammaf();
- * extern int sgngamf;
- *
- * y = gammaf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns gamma function of the argument. The result is
- * correctly signed, and the sign (+1 or -1) is also
- * returned in a global (extern) variable named sgngamf.
- * This same variable is also filled in by the logarithmic
- * gamma function lgam().
- *
- * Arguments between 0 and 10 are reduced by recurrence and the
- * function is approximated by a polynomial function covering
- * the interval (2,3). Large arguments are handled by Stirling's
- * formula. Negative arguments are made positive using
- * a reflection formula.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,-33 100,000 5.7e-7 1.0e-7
- * IEEE -33,0 100,000 6.1e-7 1.2e-7
- *
- *
- */
-/* lgamf()
- *
- * Natural logarithm of gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, lgamf();
- * extern int sgngamf;
- *
- * y = lgamf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of the absolute
- * value of the gamma function of the argument.
- * The sign (+1 or -1) of the gamma function is returned in a
- * global (extern) variable named sgngamf.
- *
- * For arguments greater than 6.5, the logarithm of the gamma
- * function is approximated by the logarithmic version of
- * Stirling's formula. Arguments between 0 and +6.5 are reduced by
- * by recurrence to the interval [.75,1.25] or [1.5,2.5] of a rational
- * approximation. The cosecant reflection formula is employed for
- * arguments less than zero.
- *
- * Arguments greater than MAXLGM = 2.035093e36 return MAXNUM and an
- * error message.
- *
- *
- *
- * ACCURACY:
- *
- *
- *
- * arithmetic domain # trials peak rms
- * IEEE -100,+100 500,000 7.4e-7 6.8e-8
- * The error criterion was relative when the function magnitude
- * was greater than one but absolute when it was less than one.
- * The routine has low relative error for positive arguments.
- *
- * The following test used the relative error criterion.
- * IEEE -2, +3 100000 4.0e-7 5.6e-8
- *
- */
-
-/* gamma.c */
-/* gamma function */
-
-/*
-Cephes Math Library Release 2.7: July, 1998
-Copyright 1984, 1987, 1989, 1992, 1998 by Stephen L. Moshier
-*/
-
-
-#include <math.h>
-
-/* define MAXGAM 34.84425627277176174 */
-
-/* Stirling's formula for the gamma function
- * gamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) ( 1 + 1/x P(1/x) )
- * .028 < 1/x < .1
- * relative error < 1.9e-11
- */
-static float STIR[] = {
--2.705194986674176E-003,
- 3.473255786154910E-003,
- 8.333331788340907E-002,
-};
-static float MAXSTIR = 26.77;
-static float SQTPIF = 2.50662827463100050242; /* sqrt( 2 pi ) */
-
-int sgngamf = 0;
-extern int sgngamf;
-extern float MAXLOGF, MAXNUMF, PIF;
-
-#ifdef ANSIC
-float expf(float);
-float logf(float);
-float powf( float, float );
-float sinf(float);
-float gammaf(float);
-float floorf(float);
-static float stirf(float);
-float polevlf( float, float *, int );
-float p1evlf( float, float *, int );
-#else
-float expf(), logf(), powf(), sinf(), floorf();
-float polevlf(), p1evlf();
-static float stirf();
-#endif
-
-/* Gamma function computed by Stirling's formula,
- * sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
- * The polynomial STIR is valid for 33 <= x <= 172.
- */
-static float stirf( float xx )
-{
-float x, y, w, v;
-
-x = xx;
-w = 1.0/x;
-w = 1.0 + w * polevlf( w, STIR, 2 );
-y = expf( -x );
-if( x > MAXSTIR )
- { /* Avoid overflow in pow() */
- v = powf( x, 0.5 * x - 0.25 );
- y *= v;
- y *= v;
- }
-else
- {
- y = powf( x, x - 0.5 ) * y;
- }
-y = SQTPIF * y * w;
-return( y );
-}
-
-
-/* gamma(x+2), 0 < x < 1 */
-static float P[] = {
- 1.536830450601906E-003,
- 5.397581592950993E-003,
- 4.130370201859976E-003,
- 7.232307985516519E-002,
- 8.203960091619193E-002,
- 4.117857447645796E-001,
- 4.227867745131584E-001,
- 9.999999822945073E-001,
-};
-
-float gammaf( float xx )
-{
-float p, q, x, z, nz;
-int i, direction, negative;
-
-x = xx;
-sgngamf = 1;
-negative = 0;
-nz = 0.0;
-if( x < 0.0 )
- {
- negative = 1;
- q = -x;
- p = floorf(q);
- if( p == q )
- goto goverf;
- i = p;
- if( (i & 1) == 0 )
- sgngamf = -1;
- nz = q - p;
- if( nz > 0.5 )
- {
- p += 1.0;
- nz = q - p;
- }
- nz = q * sinf( PIF * nz );
- if( nz == 0.0 )
- {
-goverf:
- mtherr( "gamma", OVERFLOW );
- return( sgngamf * MAXNUMF);
- }
- if( nz < 0 )
- nz = -nz;
- x = q;
- }
-if( x >= 10.0 )
- {
- z = stirf(x);
- }
-if( x < 2.0 )
- direction = 1;
-else
- direction = 0;
-z = 1.0;
-while( x >= 3.0 )
- {
- x -= 1.0;
- z *= x;
- }
-/*
-while( x < 0.0 )
- {
- if( x > -1.E-4 )
- goto small;
- z *=x;
- x += 1.0;
- }
-*/
-while( x < 2.0 )
- {
- if( x < 1.e-4 )
- goto small;
- z *=x;
- x += 1.0;
- }
-
-if( direction )
- z = 1.0/z;
-
-if( x == 2.0 )
- return(z);
-
-x -= 2.0;
-p = z * polevlf( x, P, 7 );
-
-gdone:
-
-if( negative )
- {
- p = sgngamf * PIF/(nz * p );
- }
-return(p);
-
-small:
-if( x == 0.0 )
- {
- mtherr( "gamma", SING );
- return( MAXNUMF );
- }
-else
- {
- p = z / ((1.0 + 0.5772156649015329 * x) * x);
- goto gdone;
- }
-}
-
-
-
-
-/* log gamma(x+2), -.5 < x < .5 */
-static float B[] = {
- 6.055172732649237E-004,
--1.311620815545743E-003,
- 2.863437556468661E-003,
--7.366775108654962E-003,
- 2.058355474821512E-002,
--6.735323259371034E-002,
- 3.224669577325661E-001,
- 4.227843421859038E-001
-};
-
-/* log gamma(x+1), -.25 < x < .25 */
-static float C[] = {
- 1.369488127325832E-001,
--1.590086327657347E-001,
- 1.692415923504637E-001,
--2.067882815621965E-001,
- 2.705806208275915E-001,
--4.006931650563372E-001,
- 8.224670749082976E-001,
--5.772156501719101E-001
-};
-
-/* log( sqrt( 2*pi ) ) */
-static float LS2PI = 0.91893853320467274178;
-#define MAXLGM 2.035093e36
-static float PIINV = 0.318309886183790671538;
-
-/* Logarithm of gamma function */
-
-
-float lgamf( float xx )
-{
-float p, q, w, z, x;
-float nx, tx;
-int i, direction;
-
-sgngamf = 1;
-
-x = xx;
-if( x < 0.0 )
- {
- q = -x;
- w = lgamf(q); /* note this modifies sgngam! */
- p = floorf(q);
- if( p == q )
- goto loverf;
- i = p;
- if( (i & 1) == 0 )
- sgngamf = -1;
- else
- sgngamf = 1;
- z = q - p;
- if( z > 0.5 )
- {
- p += 1.0;
- z = p - q;
- }
- z = q * sinf( PIF * z );
- if( z == 0.0 )
- goto loverf;
- z = -logf( PIINV*z ) - w;
- return( z );
- }
-
-if( x < 6.5 )
- {
- direction = 0;
- z = 1.0;
- tx = x;
- nx = 0.0;
- if( x >= 1.5 )
- {
- while( tx > 2.5 )
- {
- nx -= 1.0;
- tx = x + nx;
- z *=tx;
- }
- x += nx - 2.0;
-iv1r5:
- p = x * polevlf( x, B, 7 );
- goto cont;
- }
- if( x >= 1.25 )
- {
- z *= x;
- x -= 1.0; /* x + 1 - 2 */
- direction = 1;
- goto iv1r5;
- }
- if( x >= 0.75 )
- {
- x -= 1.0;
- p = x * polevlf( x, C, 7 );
- q = 0.0;
- goto contz;
- }
- while( tx < 1.5 )
- {
- if( tx == 0.0 )
- goto loverf;
- z *=tx;
- nx += 1.0;
- tx = x + nx;
- }
- direction = 1;
- x += nx - 2.0;
- p = x * polevlf( x, B, 7 );
-
-cont:
- if( z < 0.0 )
- {
- sgngamf = -1;
- z = -z;
- }
- else
- {
- sgngamf = 1;
- }
- q = logf(z);
- if( direction )
- q = -q;
-contz:
- return( p + q );
- }
-
-if( x > MAXLGM )
- {
-loverf:
- mtherr( "lgamf", OVERFLOW );
- return( sgngamf * MAXNUMF );
- }
-
-/* Note, though an asymptotic formula could be used for x >= 3,
- * there is cancellation error in the following if x < 6.5. */
-q = LS2PI - x;
-q += ( x - 0.5 ) * logf(x);
-
-if( x <= 1.0e4 )
- {
- z = 1.0/x;
- p = z * z;
- q += (( 6.789774945028216E-004 * p
- - 2.769887652139868E-003 ) * p
- + 8.333316229807355E-002 ) * z;
- }
-return( q );
-}
diff --git a/libm/float/gdtrf.c b/libm/float/gdtrf.c
deleted file mode 100644
index e7e02026b..000000000
--- a/libm/float/gdtrf.c
+++ /dev/null
@@ -1,144 +0,0 @@
-/* gdtrf.c
- *
- * Gamma distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, gdtrf();
- *
- * y = gdtrf( a, b, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the integral from zero to x of the gamma probability
- * density function:
- *
- *
- * x
- * b -
- * a | | b-1 -at
- * y = ----- | t e dt
- * - | |
- * | (b) -
- * 0
- *
- * The incomplete gamma integral is used, according to the
- * relation
- *
- * y = igam( b, ax ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 5.8e-5 3.0e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * gdtrf domain x < 0 0.0
- *
- */
- /* gdtrcf.c
- *
- * Complemented gamma distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, gdtrcf();
- *
- * y = gdtrcf( a, b, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the integral from x to infinity of the gamma
- * probability density function:
- *
- *
- * inf.
- * b -
- * a | | b-1 -at
- * y = ----- | t e dt
- * - | |
- * | (b) -
- * x
- *
- * The incomplete gamma integral is used, according to the
- * relation
- *
- * y = igamc( b, ax ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 9.1e-5 1.5e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * gdtrcf domain x < 0 0.0
- *
- */
-
-/* gdtr() */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-#ifdef ANSIC
-float igamf(float, float), igamcf(float, float);
-#else
-float igamf(), igamcf();
-#endif
-
-
-
-float gdtrf( float aa, float bb, float xx )
-{
-float a, b, x;
-
-a = aa;
-b = bb;
-x = xx;
-
-
-if( x < 0.0 )
- {
- mtherr( "gdtrf", DOMAIN );
- return( 0.0 );
- }
-return( igamf( b, a * x ) );
-}
-
-
-
-float gdtrcf( float aa, float bb, float xx )
-{
-float a, b, x;
-
-a = aa;
-b = bb;
-x = xx;
-if( x < 0.0 )
- {
- mtherr( "gdtrcf", DOMAIN );
- return( 0.0 );
- }
-return( igamcf( b, a * x ) );
-}
diff --git a/libm/float/hyp2f1f.c b/libm/float/hyp2f1f.c
deleted file mode 100644
index 01fe54928..000000000
--- a/libm/float/hyp2f1f.c
+++ /dev/null
@@ -1,442 +0,0 @@
-/* hyp2f1f.c
- *
- * Gauss hypergeometric function F
- * 2 1
- *
- *
- * SYNOPSIS:
- *
- * float a, b, c, x, y, hyp2f1f();
- *
- * y = hyp2f1f( a, b, c, x );
- *
- *
- * DESCRIPTION:
- *
- *
- * hyp2f1( a, b, c, x ) = F ( a, b; c; x )
- * 2 1
- *
- * inf.
- * - a(a+1)...(a+k) b(b+1)...(b+k) k+1
- * = 1 + > ----------------------------- x .
- * - c(c+1)...(c+k) (k+1)!
- * k = 0
- *
- * Cases addressed are
- * Tests and escapes for negative integer a, b, or c
- * Linear transformation if c - a or c - b negative integer
- * Special case c = a or c = b
- * Linear transformation for x near +1
- * Transformation for x < -0.5
- * Psi function expansion if x > 0.5 and c - a - b integer
- * Conditionally, a recurrence on c to make c-a-b > 0
- *
- * |x| > 1 is rejected.
- *
- * The parameters a, b, c are considered to be integer
- * valued if they are within 1.0e-6 of the nearest integer.
- *
- * ACCURACY:
- *
- * Relative error (-1 < x < 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,3 30000 5.8e-4 4.3e-6
- */
-
-/* hyp2f1 */
-
-
-/*
-Cephes Math Library Release 2.2: November, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-#define EPS 1.0e-5
-#define EPS2 1.0e-5
-#define ETHRESH 1.0e-5
-
-extern float MAXNUMF, MACHEPF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float powf(float, float);
-static float hys2f1f(float, float, float, float, float *);
-static float hyt2f1f(float, float, float, float, float *);
-float gammaf(float), logf(float), expf(float), psif(float);
-float floorf(float);
-#else
-float powf(), gammaf(), logf(), expf(), psif();
-float floorf();
-static float hyt2f1f(), hys2f1f();
-#endif
-
-#define roundf(x) (floorf((x)+(float )0.5))
-
-
-
-
-float hyp2f1f( float aa, float bb, float cc, float xx )
-{
-float a, b, c, x;
-float d, d1, d2, e;
-float p, q, r, s, y, ax;
-float ia, ib, ic, id, err;
-int flag, i, aid;
-
-a = aa;
-b = bb;
-c = cc;
-x = xx;
-err = 0.0;
-ax = fabsf(x);
-s = 1.0 - x;
-flag = 0;
-ia = roundf(a); /* nearest integer to a */
-ib = roundf(b);
-
-if( a <= 0 )
- {
- if( fabsf(a-ia) < EPS ) /* a is a negative integer */
- flag |= 1;
- }
-
-if( b <= 0 )
- {
- if( fabsf(b-ib) < EPS ) /* b is a negative integer */
- flag |= 2;
- }
-
-if( ax < 1.0 )
- {
- if( fabsf(b-c) < EPS ) /* b = c */
- {
- y = powf( s, -a ); /* s to the -a power */
- goto hypdon;
- }
- if( fabsf(a-c) < EPS ) /* a = c */
- {
- y = powf( s, -b ); /* s to the -b power */
- goto hypdon;
- }
- }
-
-
-
-if( c <= 0.0 )
- {
- ic = roundf(c); /* nearest integer to c */
- if( fabsf(c-ic) < EPS ) /* c is a negative integer */
- {
- /* check if termination before explosion */
- if( (flag & 1) && (ia > ic) )
- goto hypok;
- if( (flag & 2) && (ib > ic) )
- goto hypok;
- goto hypdiv;
- }
- }
-
-if( flag ) /* function is a polynomial */
- goto hypok;
-
-if( ax > 1.0 ) /* series diverges */
- goto hypdiv;
-
-p = c - a;
-ia = roundf(p);
-if( (ia <= 0.0) && (fabsf(p-ia) < EPS) ) /* negative int c - a */
- flag |= 4;
-
-r = c - b;
-ib = roundf(r); /* nearest integer to r */
-if( (ib <= 0.0) && (fabsf(r-ib) < EPS) ) /* negative int c - b */
- flag |= 8;
-
-d = c - a - b;
-id = roundf(d); /* nearest integer to d */
-q = fabsf(d-id);
-
-if( fabsf(ax-1.0) < EPS ) /* |x| == 1.0 */
- {
- if( x > 0.0 )
- {
- if( flag & 12 ) /* negative int c-a or c-b */
- {
- if( d >= 0.0 )
- goto hypf;
- else
- goto hypdiv;
- }
- if( d <= 0.0 )
- goto hypdiv;
- y = gammaf(c)*gammaf(d)/(gammaf(p)*gammaf(r));
- goto hypdon;
- }
-
- if( d <= -1.0 )
- goto hypdiv;
- }
-
-/* Conditionally make d > 0 by recurrence on c
- * AMS55 #15.2.27
- */
-if( d < 0.0 )
- {
-/* Try the power series first */
- y = hyt2f1f( a, b, c, x, &err );
- if( err < ETHRESH )
- goto hypdon;
-/* Apply the recurrence if power series fails */
- err = 0.0;
- aid = 2 - id;
- e = c + aid;
- d2 = hyp2f1f(a,b,e,x);
- d1 = hyp2f1f(a,b,e+1.0,x);
- q = a + b + 1.0;
- for( i=0; i<aid; i++ )
- {
- r = e - 1.0;
- y = (e*(r-(2.0*e-q)*x)*d2 + (e-a)*(e-b)*x*d1)/(e*r*s);
- e = r;
- d1 = d2;
- d2 = y;
- }
- goto hypdon;
- }
-
-
-if( flag & 12 )
- goto hypf; /* negative integer c-a or c-b */
-
-hypok:
-y = hyt2f1f( a, b, c, x, &err );
-
-hypdon:
-if( err > ETHRESH )
- {
- mtherr( "hyp2f1", PLOSS );
-/* printf( "Estimated err = %.2e\n", err );*/
- }
-return(y);
-
-/* The transformation for c-a or c-b negative integer
- * AMS55 #15.3.3
- */
-hypf:
-y = powf( s, d ) * hys2f1f( c-a, c-b, c, x, &err );
-goto hypdon;
-
-/* The alarm exit */
-hypdiv:
-mtherr( "hyp2f1f", OVERFLOW );
-return( MAXNUMF );
-}
-
-
-
-
-/* Apply transformations for |x| near 1
- * then call the power series
- */
-static float hyt2f1f( float aa, float bb, float cc, float xx, float *loss )
-{
-float a, b, c, x;
-float p, q, r, s, t, y, d, err, err1;
-float ax, id, d1, d2, e, y1;
-int i, aid;
-
-a = aa;
-b = bb;
-c = cc;
-x = xx;
-err = 0.0;
-s = 1.0 - x;
-if( x < -0.5 )
- {
- if( b > a )
- y = powf( s, -a ) * hys2f1f( a, c-b, c, -x/s, &err );
-
- else
- y = powf( s, -b ) * hys2f1f( c-a, b, c, -x/s, &err );
-
- goto done;
- }
-
-
-
-d = c - a - b;
-id = roundf(d); /* nearest integer to d */
-
-if( x > 0.8 )
-{
-
-if( fabsf(d-id) > EPS2 ) /* test for integer c-a-b */
- {
-/* Try the power series first */
- y = hys2f1f( a, b, c, x, &err );
- if( err < ETHRESH )
- goto done;
-/* If power series fails, then apply AMS55 #15.3.6 */
- q = hys2f1f( a, b, 1.0-d, s, &err );
- q *= gammaf(d) /(gammaf(c-a) * gammaf(c-b));
- r = powf(s,d) * hys2f1f( c-a, c-b, d+1.0, s, &err1 );
- r *= gammaf(-d)/(gammaf(a) * gammaf(b));
- y = q + r;
-
- q = fabsf(q); /* estimate cancellation error */
- r = fabsf(r);
- if( q > r )
- r = q;
- err += err1 + (MACHEPF*r)/y;
-
- y *= gammaf(c);
- goto done;
- }
-else
- {
-/* Psi function expansion, AMS55 #15.3.10, #15.3.11, #15.3.12 */
- if( id >= 0.0 )
- {
- e = d;
- d1 = d;
- d2 = 0.0;
- aid = id;
- }
- else
- {
- e = -d;
- d1 = 0.0;
- d2 = d;
- aid = -id;
- }
-
- ax = logf(s);
-
- /* sum for t = 0 */
- y = psif(1.0) + psif(1.0+e) - psif(a+d1) - psif(b+d1) - ax;
- y /= gammaf(e+1.0);
-
- p = (a+d1) * (b+d1) * s / gammaf(e+2.0); /* Poch for t=1 */
- t = 1.0;
- do
- {
- r = psif(1.0+t) + psif(1.0+t+e) - psif(a+t+d1)
- - psif(b+t+d1) - ax;
- q = p * r;
- y += q;
- p *= s * (a+t+d1) / (t+1.0);
- p *= (b+t+d1) / (t+1.0+e);
- t += 1.0;
- }
- while( fabsf(q/y) > EPS );
-
-
- if( id == 0.0 )
- {
- y *= gammaf(c)/(gammaf(a)*gammaf(b));
- goto psidon;
- }
-
- y1 = 1.0;
-
- if( aid == 1 )
- goto nosum;
-
- t = 0.0;
- p = 1.0;
- for( i=1; i<aid; i++ )
- {
- r = 1.0-e+t;
- p *= s * (a+t+d2) * (b+t+d2) / r;
- t += 1.0;
- p /= t;
- y1 += p;
- }
-
-
-nosum:
- p = gammaf(c);
- y1 *= gammaf(e) * p / (gammaf(a+d1) * gammaf(b+d1));
- y *= p / (gammaf(a+d2) * gammaf(b+d2));
- if( (aid & 1) != 0 )
- y = -y;
-
- q = powf( s, id ); /* s to the id power */
- if( id > 0.0 )
- y *= q;
- else
- y1 *= q;
-
- y += y1;
-psidon:
- goto done;
- }
-}
-
-
-/* Use defining power series if no special cases */
-y = hys2f1f( a, b, c, x, &err );
-
-done:
-*loss = err;
-return(y);
-}
-
-
-
-
-
-/* Defining power series expansion of Gauss hypergeometric function */
-
-static float hys2f1f( float aa, float bb, float cc, float xx, float *loss )
-{
-int i;
-float a, b, c, x;
-float f, g, h, k, m, s, u, umax;
-
-
-a = aa;
-b = bb;
-c = cc;
-x = xx;
-i = 0;
-umax = 0.0;
-f = a;
-g = b;
-h = c;
-k = 0.0;
-s = 1.0;
-u = 1.0;
-
-do
- {
- if( fabsf(h) < EPS )
- return( MAXNUMF );
- m = k + 1.0;
- u = u * ((f+k) * (g+k) * x / ((h+k) * m));
- s += u;
- k = fabsf(u); /* remember largest term summed */
- if( k > umax )
- umax = k;
- k = m;
- if( ++i > 10000 ) /* should never happen */
- {
- *loss = 1.0;
- return(s);
- }
- }
-while( fabsf(u/s) > MACHEPF );
-
-/* return estimated relative error */
-*loss = (MACHEPF*umax)/fabsf(s) + (MACHEPF*i);
-
-return(s);
-}
-
-
diff --git a/libm/float/hypergf.c b/libm/float/hypergf.c
deleted file mode 100644
index 60d0eb4c5..000000000
--- a/libm/float/hypergf.c
+++ /dev/null
@@ -1,384 +0,0 @@
-/* hypergf.c
- *
- * Confluent hypergeometric function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, hypergf();
- *
- * y = hypergf( a, b, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the confluent hypergeometric function
- *
- * 1 2
- * a x a(a+1) x
- * F ( a,b;x ) = 1 + ---- + --------- + ...
- * 1 1 b 1! b(b+1) 2!
- *
- * Many higher transcendental functions are special cases of
- * this power series.
- *
- * As is evident from the formula, b must not be a negative
- * integer or zero unless a is an integer with 0 >= a > b.
- *
- * The routine attempts both a direct summation of the series
- * and an asymptotic expansion. In each case error due to
- * roundoff, cancellation, and nonconvergence is estimated.
- * The result with smaller estimated error is returned.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points (a, b, x), all three variables
- * ranging from 0 to 30.
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,5 10000 6.6e-7 1.3e-7
- * IEEE 0,30 30000 1.1e-5 6.5e-7
- *
- * Larger errors can be observed when b is near a negative
- * integer or zero. Certain combinations of arguments yield
- * serious cancellation error in the power series summation
- * and also are not in the region of near convergence of the
- * asymptotic series. An error message is printed if the
- * self-estimated relative error is greater than 1.0e-3.
- *
- */
-
-/* hyperg.c */
-
-
-/*
-Cephes Math Library Release 2.1: November, 1988
-Copyright 1984, 1987, 1988 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-extern float MAXNUMF, MACHEPF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float expf(float);
-float hyp2f0f(float, float, float, int, float *);
-static float hy1f1af(float, float, float, float *);
-static float hy1f1pf(float, float, float, float *);
-float logf(float), gammaf(float), lgamf(float);
-#else
-float expf(), hyp2f0f();
-float logf(), gammaf(), lgamf();
-static float hy1f1pf(), hy1f1af();
-#endif
-
-float hypergf( float aa, float bb, float xx )
-{
-float a, b, x, asum, psum, acanc, pcanc, temp;
-
-
-a = aa;
-b = bb;
-x = xx;
-/* See if a Kummer transformation will help */
-temp = b - a;
-if( fabsf(temp) < 0.001 * fabsf(a) )
- return( expf(x) * hypergf( temp, b, -x ) );
-
-psum = hy1f1pf( a, b, x, &pcanc );
-if( pcanc < 1.0e-6 )
- goto done;
-
-
-/* try asymptotic series */
-
-asum = hy1f1af( a, b, x, &acanc );
-
-
-/* Pick the result with less estimated error */
-
-if( acanc < pcanc )
- {
- pcanc = acanc;
- psum = asum;
- }
-
-done:
-if( pcanc > 1.0e-3 )
- mtherr( "hyperg", PLOSS );
-
-return( psum );
-}
-
-
-
-
-/* Power series summation for confluent hypergeometric function */
-
-
-static float hy1f1pf( float aa, float bb, float xx, float *err )
-{
-float a, b, x, n, a0, sum, t, u, temp;
-float an, bn, maxt, pcanc;
-
-a = aa;
-b = bb;
-x = xx;
-/* set up for power series summation */
-an = a;
-bn = b;
-a0 = 1.0;
-sum = 1.0;
-n = 1.0;
-t = 1.0;
-maxt = 0.0;
-
-
-while( t > MACHEPF )
- {
- if( bn == 0 ) /* check bn first since if both */
- {
- mtherr( "hypergf", SING );
- return( MAXNUMF ); /* an and bn are zero it is */
- }
- if( an == 0 ) /* a singularity */
- return( sum );
- if( n > 200 )
- goto pdone;
- u = x * ( an / (bn * n) );
-
- /* check for blowup */
- temp = fabsf(u);
- if( (temp > 1.0 ) && (maxt > (MAXNUMF/temp)) )
- {
- pcanc = 1.0; /* estimate 100% error */
- goto blowup;
- }
-
- a0 *= u;
- sum += a0;
- t = fabsf(a0);
- if( t > maxt )
- maxt = t;
-/*
- if( (maxt/fabsf(sum)) > 1.0e17 )
- {
- pcanc = 1.0;
- goto blowup;
- }
-*/
- an += 1.0;
- bn += 1.0;
- n += 1.0;
- }
-
-pdone:
-
-/* estimate error due to roundoff and cancellation */
-if( sum != 0.0 )
- maxt /= fabsf(sum);
-maxt *= MACHEPF; /* this way avoids multiply overflow */
-pcanc = fabsf( MACHEPF * n + maxt );
-
-blowup:
-
-*err = pcanc;
-
-return( sum );
-}
-
-
-/* hy1f1a() */
-/* asymptotic formula for hypergeometric function:
- *
- * ( -a
- * -- ( |z|
- * | (b) ( -------- 2f0( a, 1+a-b, -1/x )
- * ( --
- * ( | (b-a)
- *
- *
- * x a-b )
- * e |x| )
- * + -------- 2f0( b-a, 1-a, 1/x ) )
- * -- )
- * | (a) )
- */
-
-static float hy1f1af( float aa, float bb, float xx, float *err )
-{
-float a, b, x, h1, h2, t, u, temp, acanc, asum, err1, err2;
-
-a = aa;
-b = bb;
-x = xx;
-if( x == 0 )
- {
- acanc = 1.0;
- asum = MAXNUMF;
- goto adone;
- }
-temp = logf( fabsf(x) );
-t = x + temp * (a-b);
-u = -temp * a;
-
-if( b > 0 )
- {
- temp = lgamf(b);
- t += temp;
- u += temp;
- }
-
-h1 = hyp2f0f( a, a-b+1, -1.0/x, 1, &err1 );
-
-temp = expf(u) / gammaf(b-a);
-h1 *= temp;
-err1 *= temp;
-
-h2 = hyp2f0f( b-a, 1.0-a, 1.0/x, 2, &err2 );
-
-if( a < 0 )
- temp = expf(t) / gammaf(a);
-else
- temp = expf( t - lgamf(a) );
-
-h2 *= temp;
-err2 *= temp;
-
-if( x < 0.0 )
- asum = h1;
-else
- asum = h2;
-
-acanc = fabsf(err1) + fabsf(err2);
-
-
-if( b < 0 )
- {
- temp = gammaf(b);
- asum *= temp;
- acanc *= fabsf(temp);
- }
-
-
-if( asum != 0.0 )
- acanc /= fabsf(asum);
-
-acanc *= 30.0; /* fudge factor, since error of asymptotic formula
- * often seems this much larger than advertised */
-
-adone:
-
-
-*err = acanc;
-return( asum );
-}
-
-/* hyp2f0() */
-
-float hyp2f0f(float aa, float bb, float xx, int type, float *err)
-{
-float a, b, x, a0, alast, t, tlast, maxt;
-float n, an, bn, u, sum, temp;
-
-a = aa;
-b = bb;
-x = xx;
-an = a;
-bn = b;
-a0 = 1.0;
-alast = 1.0;
-sum = 0.0;
-n = 1.0;
-t = 1.0;
-tlast = 1.0e9;
-maxt = 0.0;
-
-do
- {
- if( an == 0 )
- goto pdone;
- if( bn == 0 )
- goto pdone;
-
- u = an * (bn * x / n);
-
- /* check for blowup */
- temp = fabsf(u);
- if( (temp > 1.0 ) && (maxt > (MAXNUMF/temp)) )
- goto error;
-
- a0 *= u;
- t = fabsf(a0);
-
- /* terminating condition for asymptotic series */
- if( t > tlast )
- goto ndone;
-
- tlast = t;
- sum += alast; /* the sum is one term behind */
- alast = a0;
-
- if( n > 200 )
- goto ndone;
-
- an += 1.0;
- bn += 1.0;
- n += 1.0;
- if( t > maxt )
- maxt = t;
- }
-while( t > MACHEPF );
-
-
-pdone: /* series converged! */
-
-/* estimate error due to roundoff and cancellation */
-*err = fabsf( MACHEPF * (n + maxt) );
-
-alast = a0;
-goto done;
-
-ndone: /* series did not converge */
-
-/* The following "Converging factors" are supposed to improve accuracy,
- * but do not actually seem to accomplish very much. */
-
-n -= 1.0;
-x = 1.0/x;
-
-switch( type ) /* "type" given as subroutine argument */
-{
-case 1:
- alast *= ( 0.5 + (0.125 + 0.25*b - 0.5*a + 0.25*x - 0.25*n)/x );
- break;
-
-case 2:
- alast *= 2.0/3.0 - b + 2.0*a + x - n;
- break;
-
-default:
- ;
-}
-
-/* estimate error due to roundoff, cancellation, and nonconvergence */
-*err = MACHEPF * (n + maxt) + fabsf( a0 );
-
-
-done:
-sum += alast;
-return( sum );
-
-/* series blew up: */
-error:
-*err = MAXNUMF;
-mtherr( "hypergf", TLOSS );
-return( sum );
-}
diff --git a/libm/float/i0f.c b/libm/float/i0f.c
deleted file mode 100644
index bb62cf60a..000000000
--- a/libm/float/i0f.c
+++ /dev/null
@@ -1,160 +0,0 @@
-/* i0f.c
- *
- * Modified Bessel function of order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i0();
- *
- * y = i0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order zero of the
- * argument.
- *
- * The function is defined as i0(x) = j0( ix ).
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 100000 4.0e-7 7.9e-8
- *
- */
- /* i0ef.c
- *
- * Modified Bessel function of order zero,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i0ef();
- *
- * y = i0ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of order zero of the argument.
- *
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 100000 3.7e-7 7.0e-8
- * See i0f().
- *
- */
-
-/* i0.c */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* Chebyshev coefficients for exp(-x) I0(x)
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I0(x) } = 1.
- */
-
-static float A[] =
-{
--1.30002500998624804212E-8f,
- 6.04699502254191894932E-8f,
--2.67079385394061173391E-7f,
- 1.11738753912010371815E-6f,
--4.41673835845875056359E-6f,
- 1.64484480707288970893E-5f,
--5.75419501008210370398E-5f,
- 1.88502885095841655729E-4f,
--5.76375574538582365885E-4f,
- 1.63947561694133579842E-3f,
--4.32430999505057594430E-3f,
- 1.05464603945949983183E-2f,
--2.37374148058994688156E-2f,
- 4.93052842396707084878E-2f,
--9.49010970480476444210E-2f,
- 1.71620901522208775349E-1f,
--3.04682672343198398683E-1f,
- 6.76795274409476084995E-1f
-};
-
-
-/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
- */
-
-static float B[] =
-{
- 3.39623202570838634515E-9f,
- 2.26666899049817806459E-8f,
- 2.04891858946906374183E-7f,
- 2.89137052083475648297E-6f,
- 6.88975834691682398426E-5f,
- 3.36911647825569408990E-3f,
- 8.04490411014108831608E-1f
-};
-
-
-float chbevlf(float, float *, int), expf(float), sqrtf(float);
-
-float i0f( float x )
-{
-float y;
-
-if( x < 0 )
- x = -x;
-if( x <= 8.0f )
- {
- y = 0.5f*x - 2.0f;
- return( expf(x) * chbevlf( y, A, 18 ) );
- }
-
-return( expf(x) * chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) );
-}
-
-
-
-float chbevlf(float, float *, int), expf(float), sqrtf(float);
-
-float i0ef( float x )
-{
-float y;
-
-if( x < 0 )
- x = -x;
-if( x <= 8.0f )
- {
- y = 0.5f*x - 2.0f;
- return( chbevlf( y, A, 18 ) );
- }
-
-return( chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) );
-}
diff --git a/libm/float/i1f.c b/libm/float/i1f.c
deleted file mode 100644
index e9741e1da..000000000
--- a/libm/float/i1f.c
+++ /dev/null
@@ -1,177 +0,0 @@
-/* i1f.c
- *
- * Modified Bessel function of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i1f();
- *
- * y = i1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order one of the
- * argument.
- *
- * The function is defined as i1(x) = -i j1( ix ).
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 100000 1.5e-6 1.6e-7
- *
- *
- */
- /* i1ef.c
- *
- * Modified Bessel function of order one,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i1ef();
- *
- * y = i1ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of order one of the argument.
- *
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
- * See i1().
- *
- */
-
-/* i1.c 2 */
-
-
-/*
-Cephes Math Library Release 2.0: March, 1987
-Copyright 1985, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* Chebyshev coefficients for exp(-x) I1(x) / x
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I1(x) / x } = 1/2.
- */
-
-static float A[] =
-{
- 9.38153738649577178388E-9f,
--4.44505912879632808065E-8f,
- 2.00329475355213526229E-7f,
--8.56872026469545474066E-7f,
- 3.47025130813767847674E-6f,
--1.32731636560394358279E-5f,
- 4.78156510755005422638E-5f,
--1.61760815825896745588E-4f,
- 5.12285956168575772895E-4f,
--1.51357245063125314899E-3f,
- 4.15642294431288815669E-3f,
--1.05640848946261981558E-2f,
- 2.47264490306265168283E-2f,
--5.29459812080949914269E-2f,
- 1.02643658689847095384E-1f,
--1.76416518357834055153E-1f,
- 2.52587186443633654823E-1f
-};
-
-
-/* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
- */
-
-static float B[] =
-{
--3.83538038596423702205E-9f,
--2.63146884688951950684E-8f,
--2.51223623787020892529E-7f,
--3.88256480887769039346E-6f,
--1.10588938762623716291E-4f,
--9.76109749136146840777E-3f,
- 7.78576235018280120474E-1f
-};
-
-/* i1.c */
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float chbevlf(float, float *, int);
-float expf(float), sqrtf(float);
-#else
-float chbevlf(), expf(), sqrtf();
-#endif
-
-
-float i1f(float xx)
-{
-float x, y, z;
-
-x = xx;
-z = fabsf(x);
-if( z <= 8.0f )
- {
- y = 0.5f*z - 2.0f;
- z = chbevlf( y, A, 17 ) * z * expf(z);
- }
-else
- {
- z = expf(z) * chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z);
- }
-if( x < 0.0f )
- z = -z;
-return( z );
-}
-
-/* i1e() */
-
-float i1ef( float xx )
-{
-float x, y, z;
-
-x = xx;
-z = fabsf(x);
-if( z <= 8.0f )
- {
- y = 0.5f*z - 2.0f;
- z = chbevlf( y, A, 17 ) * z;
- }
-else
- {
- z = chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z);
- }
-if( x < 0.0f )
- z = -z;
-return( z );
-}
diff --git a/libm/float/igamf.c b/libm/float/igamf.c
deleted file mode 100644
index c54225df4..000000000
--- a/libm/float/igamf.c
+++ /dev/null
@@ -1,223 +0,0 @@
-/* igamf.c
- *
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, x, y, igamf();
- *
- * y = igamf( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 20000 7.8e-6 5.9e-7
- *
- */
- /* igamcf()
- *
- * Complemented incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, x, y, igamcf();
- *
- * y = igamcf( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 30000 7.8e-6 5.9e-7
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1985, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* BIG = 1/MACHEPF */
-#define BIG 16777216.
-
-extern float MACHEPF, MAXLOGF;
-
-#ifdef ANSIC
-float lgamf(float), expf(float), logf(float), igamf(float, float);
-#else
-float lgamf(), expf(), logf(), igamf();
-#endif
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-
-
-float igamcf( float aa, float xx )
-{
-float a, x, ans, c, yc, ax, y, z;
-float pk, pkm1, pkm2, qk, qkm1, qkm2;
-float r, t;
-static float big = BIG;
-
-a = aa;
-x = xx;
-if( (x <= 0) || ( a <= 0) )
- return( 1.0 );
-
-if( (x < 1.0) || (x < a) )
- return( 1.0 - igamf(a,x) );
-
-ax = a * logf(x) - x - lgamf(a);
-if( ax < -MAXLOGF )
- {
- mtherr( "igamcf", UNDERFLOW );
- return( 0.0 );
- }
-ax = expf(ax);
-
-/* continued fraction */
-y = 1.0 - a;
-z = x + y + 1.0;
-c = 0.0;
-pkm2 = 1.0;
-qkm2 = x;
-pkm1 = x + 1.0;
-qkm1 = z * x;
-ans = pkm1/qkm1;
-
-do
- {
- c += 1.0;
- y += 1.0;
- z += 2.0;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if( qk != 0 )
- {
- r = pk/qk;
- t = fabsf( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if( fabsf(pk) > big )
- {
- pkm2 *= MACHEPF;
- pkm1 *= MACHEPF;
- qkm2 *= MACHEPF;
- qkm1 *= MACHEPF;
- }
- }
-while( t > MACHEPF );
-
-return( ans * ax );
-}
-
-
-
-/* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
- *
- */
-
-float igamf( float aa, float xx )
-{
-float a, x, ans, ax, c, r;
-
-a = aa;
-x = xx;
-if( (x <= 0) || ( a <= 0) )
- return( 0.0 );
-
-if( (x > 1.0) && (x > a ) )
- return( 1.0 - igamcf(a,x) );
-
-/* Compute x**a * exp(-x) / gamma(a) */
-ax = a * logf(x) - x - lgamf(a);
-if( ax < -MAXLOGF )
- {
- mtherr( "igamf", UNDERFLOW );
- return( 0.0 );
- }
-ax = expf(ax);
-
-/* power series */
-r = a;
-c = 1.0;
-ans = 1.0;
-
-do
- {
- r += 1.0;
- c *= x/r;
- ans += c;
- }
-while( c/ans > MACHEPF );
-
-return( ans * ax/a );
-}
diff --git a/libm/float/igamif.c b/libm/float/igamif.c
deleted file mode 100644
index 5a33b4982..000000000
--- a/libm/float/igamif.c
+++ /dev/null
@@ -1,112 +0,0 @@
-/* igamif()
- *
- * Inverse of complemented imcomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, x, y, igamif();
- *
- * x = igamif( a, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * igamc( a, x ) = y.
- *
- * Starting with the approximate value
- *
- * 3
- * x = a t
- *
- * where
- *
- * t = 1 - d - ndtri(y) sqrt(d)
- *
- * and
- *
- * d = 1/9a,
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of igamc(a,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Tested for a ranging from 0 to 100 and x from 0 to 1.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.0e-5 1.5e-6
- *
- */
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-extern float MACHEPF, MAXLOGF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float igamcf(float, float);
-float ndtrif(float), expf(float), logf(float), sqrtf(float), lgamf(float);
-#else
-float igamcf();
-float ndtrif(), expf(), logf(), sqrtf(), lgamf();
-#endif
-
-
-float igamif( float aa, float yy0 )
-{
-float a, y0, d, y, x0, lgm;
-int i;
-
-a = aa;
-y0 = yy0;
-/* approximation to inverse function */
-d = 1.0/(9.0*a);
-y = ( 1.0 - d - ndtrif(y0) * sqrtf(d) );
-x0 = a * y * y * y;
-
-lgm = lgamf(a);
-
-for( i=0; i<10; i++ )
- {
- if( x0 <= 0.0 )
- {
- mtherr( "igamif", UNDERFLOW );
- return(0.0);
- }
- y = igamcf(a,x0);
-/* compute the derivative of the function at this point */
- d = (a - 1.0) * logf(x0) - x0 - lgm;
- if( d < -MAXLOGF )
- {
- mtherr( "igamif", UNDERFLOW );
- goto done;
- }
- d = -expf(d);
-/* compute the step to the next approximation of x */
- if( d == 0.0 )
- goto done;
- d = (y - y0)/d;
- x0 = x0 - d;
- if( i < 3 )
- continue;
- if( fabsf(d/x0) < (2.0 * MACHEPF) )
- goto done;
- }
-
-done:
-return( x0 );
-}
diff --git a/libm/float/incbetf.c b/libm/float/incbetf.c
deleted file mode 100644
index fed9aae4b..000000000
--- a/libm/float/incbetf.c
+++ /dev/null
@@ -1,424 +0,0 @@
-/* incbetf.c
- *
- * Incomplete beta integral
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, incbetf();
- *
- * y = incbetf( a, b, x );
- *
- *
- * DESCRIPTION:
- *
- * Returns incomplete beta integral of the arguments, evaluated
- * from zero to x. The function is defined as
- *
- * x
- * - -
- * | (a+b) | | a-1 b-1
- * ----------- | t (1-t) dt.
- * - - | |
- * | (a) | (b) -
- * 0
- *
- * The domain of definition is 0 <= x <= 1. In this
- * implementation a and b are restricted to positive values.
- * The integral from x to 1 may be obtained by the symmetry
- * relation
- *
- * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
- *
- * The integral is evaluated by a continued fraction expansion.
- * If a < 1, the function calls itself recursively after a
- * transformation to increase a to a+1.
- *
- * ACCURACY:
- *
- * Tested at random points (a,b,x) with a and b in the indicated
- * interval and x between 0 and 1.
- *
- * arithmetic domain # trials peak rms
- * Relative error:
- * IEEE 0,30 10000 3.7e-5 5.1e-6
- * IEEE 0,100 10000 1.7e-4 2.5e-5
- * The useful domain for relative error is limited by underflow
- * of the single precision exponential function.
- * Absolute error:
- * IEEE 0,30 100000 2.2e-5 9.6e-7
- * IEEE 0,100 10000 6.5e-5 3.7e-6
- *
- * Larger errors may occur for extreme ratios of a and b.
- *
- * ERROR MESSAGES:
- * message condition value returned
- * incbetf domain x<0, x>1 0.0
- */
-
-
-/*
-Cephes Math Library, Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-#ifdef ANSIC
-float lgamf(float), expf(float), logf(float);
-static float incbdf(float, float, float);
-static float incbcff(float, float, float);
-float incbpsf(float, float, float);
-#else
-float lgamf(), expf(), logf();
-float incbpsf();
-static float incbcff(), incbdf();
-#endif
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-/* BIG = 1/MACHEPF */
-#define BIG 16777216.
-extern float MACHEPF, MAXLOGF;
-#define MINLOGF (-MAXLOGF)
-
-float incbetf( float aaa, float bbb, float xxx )
-{
-float aa, bb, xx, ans, a, b, t, x, onemx;
-int flag;
-
-aa = aaa;
-bb = bbb;
-xx = xxx;
-if( (xx <= 0.0) || ( xx >= 1.0) )
- {
- if( xx == 0.0 )
- return(0.0);
- if( xx == 1.0 )
- return( 1.0 );
- mtherr( "incbetf", DOMAIN );
- return( 0.0 );
- }
-
-onemx = 1.0 - xx;
-
-
-/* transformation for small aa */
-
-if( aa <= 1.0 )
- {
- ans = incbetf( aa+1.0, bb, xx );
- t = aa*logf(xx) + bb*logf( 1.0-xx )
- + lgamf(aa+bb) - lgamf(aa+1.0) - lgamf(bb);
- if( t > MINLOGF )
- ans += expf(t);
- return( ans );
- }
-
-
-/* see if x is greater than the mean */
-
-if( xx > (aa/(aa+bb)) )
- {
- flag = 1;
- a = bb;
- b = aa;
- t = xx;
- x = onemx;
- }
-else
- {
- flag = 0;
- a = aa;
- b = bb;
- t = onemx;
- x = xx;
- }
-
-/* transformation for small aa */
-/*
-if( a <= 1.0 )
- {
- ans = a*logf(x) + b*logf( onemx )
- + lgamf(a+b) - lgamf(a+1.0) - lgamf(b);
- t = incbetf( a+1.0, b, x );
- if( ans > MINLOGF )
- t += expf(ans);
- goto bdone;
- }
-*/
-/* Choose expansion for optimal convergence */
-
-
-if( b > 10.0 )
- {
-if( fabsf(b*x/a) < 0.3 )
- {
- t = incbpsf( a, b, x );
- goto bdone;
- }
- }
-
-ans = x * (a+b-2.0)/(a-1.0);
-if( ans < 1.0 )
- {
- ans = incbcff( a, b, x );
- t = b * logf( t );
- }
-else
- {
- ans = incbdf( a, b, x );
- t = (b-1.0) * logf(t);
- }
-
-t += a*logf(x) + lgamf(a+b) - lgamf(a) - lgamf(b);
-t += logf( ans/a );
-
-if( t < MINLOGF )
- {
- t = 0.0;
- if( flag == 0 )
- {
- mtherr( "incbetf", UNDERFLOW );
- }
- }
-else
- {
- t = expf(t);
- }
-bdone:
-
-if( flag )
- t = 1.0 - t;
-
-return( t );
-}
-
-/* Continued fraction expansion #1
- * for incomplete beta integral
- */
-
-static float incbcff( float aa, float bb, float xx )
-{
-float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
-float k1, k2, k3, k4, k5, k6, k7, k8;
-float r, t, ans;
-static float big = BIG;
-int n;
-
-a = aa;
-b = bb;
-x = xx;
-k1 = a;
-k2 = a + b;
-k3 = a;
-k4 = a + 1.0;
-k5 = 1.0;
-k6 = b - 1.0;
-k7 = k4;
-k8 = a + 2.0;
-
-pkm2 = 0.0;
-qkm2 = 1.0;
-pkm1 = 1.0;
-qkm1 = 1.0;
-ans = 1.0;
-r = 0.0;
-n = 0;
-do
- {
-
- xk = -( x * k1 * k2 )/( k3 * k4 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- xk = ( x * k5 * k6 )/( k7 * k8 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- if( qk != 0 )
- r = pk/qk;
- if( r != 0 )
- {
- t = fabsf( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
-
- if( t < MACHEPF )
- goto cdone;
-
- k1 += 1.0;
- k2 += 1.0;
- k3 += 2.0;
- k4 += 2.0;
- k5 += 1.0;
- k6 -= 1.0;
- k7 += 2.0;
- k8 += 2.0;
-
- if( (fabsf(qk) + fabsf(pk)) > big )
- {
- pkm2 *= MACHEPF;
- pkm1 *= MACHEPF;
- qkm2 *= MACHEPF;
- qkm1 *= MACHEPF;
- }
- if( (fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF) )
- {
- pkm2 *= big;
- pkm1 *= big;
- qkm2 *= big;
- qkm1 *= big;
- }
- }
-while( ++n < 100 );
-
-cdone:
-return(ans);
-}
-
-
-/* Continued fraction expansion #2
- * for incomplete beta integral
- */
-
-static float incbdf( float aa, float bb, float xx )
-{
-float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
-float k1, k2, k3, k4, k5, k6, k7, k8;
-float r, t, ans, z;
-static float big = BIG;
-int n;
-
-a = aa;
-b = bb;
-x = xx;
-k1 = a;
-k2 = b - 1.0;
-k3 = a;
-k4 = a + 1.0;
-k5 = 1.0;
-k6 = a + b;
-k7 = a + 1.0;;
-k8 = a + 2.0;
-
-pkm2 = 0.0;
-qkm2 = 1.0;
-pkm1 = 1.0;
-qkm1 = 1.0;
-z = x / (1.0-x);
-ans = 1.0;
-r = 0.0;
-n = 0;
-do
- {
-
- xk = -( z * k1 * k2 )/( k3 * k4 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- xk = ( z * k5 * k6 )/( k7 * k8 );
- pk = pkm1 + pkm2 * xk;
- qk = qkm1 + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- if( qk != 0 )
- r = pk/qk;
- if( r != 0 )
- {
- t = fabsf( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
-
- if( t < MACHEPF )
- goto cdone;
-
- k1 += 1.0;
- k2 -= 1.0;
- k3 += 2.0;
- k4 += 2.0;
- k5 += 1.0;
- k6 += 1.0;
- k7 += 2.0;
- k8 += 2.0;
-
- if( (fabsf(qk) + fabsf(pk)) > big )
- {
- pkm2 *= MACHEPF;
- pkm1 *= MACHEPF;
- qkm2 *= MACHEPF;
- qkm1 *= MACHEPF;
- }
- if( (fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF) )
- {
- pkm2 *= big;
- pkm1 *= big;
- qkm2 *= big;
- qkm1 *= big;
- }
- }
-while( ++n < 100 );
-
-cdone:
-return(ans);
-}
-
-
-/* power series */
-float incbpsf( float aa, float bb, float xx )
-{
-float a, b, x, t, u, y, s;
-
-a = aa;
-b = bb;
-x = xx;
-
-y = a * logf(x) + (b-1.0)*logf(1.0-x) - logf(a);
-y -= lgamf(a) + lgamf(b);
-y += lgamf(a+b);
-
-
-t = x / (1.0 - x);
-s = 0.0;
-u = 1.0;
-do
- {
- b -= 1.0;
- if( b == 0.0 )
- break;
- a += 1.0;
- u *= t*b/a;
- s += u;
- }
-while( fabsf(u) > MACHEPF );
-
-if( y < MINLOGF )
- {
- mtherr( "incbetf", UNDERFLOW );
- s = 0.0;
- }
-else
- s = expf(y) * (1.0 + s);
-/*printf( "incbpsf: %.4e\n", s );*/
-return(s);
-}
diff --git a/libm/float/incbif.c b/libm/float/incbif.c
deleted file mode 100644
index 4d8c0652e..000000000
--- a/libm/float/incbif.c
+++ /dev/null
@@ -1,197 +0,0 @@
-/* incbif()
- *
- * Inverse of imcomplete beta integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, x, y, incbif();
- *
- * x = incbif( a, b, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * incbet( a, b, x ) = y.
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of incbet(a,b,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * x a,b
- * arithmetic domain domain # trials peak rms
- * IEEE 0,1 0,100 5000 2.8e-4 8.3e-6
- *
- * Overflow and larger errors may occur for one of a or b near zero
- * and the other large.
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-extern float MACHEPF, MINLOGF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float incbetf(float, float, float);
-float ndtrif(float), expf(float), logf(float), sqrtf(float), lgamf(float);
-#else
-float incbetf();
-float ndtrif(), expf(), logf(), sqrtf(), lgamf();
-#endif
-
-float incbif( float aaa, float bbb, float yyy0 )
-{
-float aa, bb, yy0, a, b, y0;
-float d, y, x, x0, x1, lgm, yp, di;
-int i, rflg;
-
-
-aa = aaa;
-bb = bbb;
-yy0 = yyy0;
-if( yy0 <= 0 )
- return(0.0);
-if( yy0 >= 1.0 )
- return(1.0);
-
-/* approximation to inverse function */
-
-yp = -ndtrif(yy0);
-
-if( yy0 > 0.5 )
- {
- rflg = 1;
- a = bb;
- b = aa;
- y0 = 1.0 - yy0;
- yp = -yp;
- }
-else
- {
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- }
-
-
-if( (aa <= 1.0) || (bb <= 1.0) )
- {
- y = 0.5 * yp * yp;
- }
-else
- {
- lgm = (yp * yp - 3.0)* 0.16666666666666667;
- x0 = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) );
- y = yp * sqrtf( x0 + lgm ) / x0
- - ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) )
- * (lgm + 0.833333333333333333 - 2.0/(3.0*x0));
- y = 2.0 * y;
- if( y < MINLOGF )
- {
- x0 = 1.0;
- goto under;
- }
- }
-
-x = a/( a + b * expf(y) );
-y = incbetf( a, b, x );
-yp = (y - y0)/y0;
-if( fabsf(yp) < 0.1 )
- goto newt;
-
-/* Resort to interval halving if not close enough */
-x0 = 0.0;
-x1 = 1.0;
-di = 0.5;
-
-for( i=0; i<20; i++ )
- {
- if( i != 0 )
- {
- x = di * x1 + (1.0-di) * x0;
- y = incbetf( a, b, x );
- yp = (y - y0)/y0;
- if( fabsf(yp) < 1.0e-3 )
- goto newt;
- }
-
- if( y < y0 )
- {
- x0 = x;
- di = 0.5;
- }
- else
- {
- x1 = x;
- di *= di;
- if( di == 0.0 )
- di = 0.5;
- }
- }
-
-if( x0 == 0.0 )
- {
-under:
- mtherr( "incbif", UNDERFLOW );
- goto done;
- }
-
-newt:
-
-x0 = x;
-lgm = lgamf(a+b) - lgamf(a) - lgamf(b);
-
-for( i=0; i<10; i++ )
- {
-/* compute the function at this point */
- if( i != 0 )
- y = incbetf(a,b,x0);
-/* compute the derivative of the function at this point */
- d = (a - 1.0) * logf(x0) + (b - 1.0) * logf(1.0-x0) + lgm;
- if( d < MINLOGF )
- {
- x0 = 0.0;
- goto under;
- }
- d = expf(d);
-/* compute the step to the next approximation of x */
- d = (y - y0)/d;
- x = x0;
- x0 = x0 - d;
- if( x0 <= 0.0 )
- {
- x0 = 0.0;
- goto under;
- }
- if( x0 >= 1.0 )
- {
- x0 = 1.0;
- goto under;
- }
- if( i < 2 )
- continue;
- if( fabsf(d/x0) < 256.0 * MACHEPF )
- goto done;
- }
-
-done:
-if( rflg )
- x0 = 1.0 - x0;
-return( x0 );
-}
diff --git a/libm/float/ivf.c b/libm/float/ivf.c
deleted file mode 100644
index b7ab2b619..000000000
--- a/libm/float/ivf.c
+++ /dev/null
@@ -1,114 +0,0 @@
-/* ivf.c
- *
- * Modified Bessel function of noninteger order
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, ivf();
- *
- * y = ivf( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order v of the
- * argument. If x is negative, v must be integer valued.
- *
- * The function is defined as Iv(x) = Jv( ix ). It is
- * here computed in terms of the confluent hypergeometric
- * function, according to the formula
- *
- * v -x
- * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)
- *
- * If v is a negative integer, then v is replaced by -v.
- *
- *
- * ACCURACY:
- *
- * Tested at random points (v, x), with v between 0 and
- * 30, x between 0 and 28.
- * arithmetic domain # trials peak rms
- * Relative error:
- * IEEE 0,15 3000 4.7e-6 5.4e-7
- * Absolute error (relative when function > 1)
- * IEEE 0,30 5000 8.5e-6 1.3e-6
- *
- * Accuracy is diminished if v is near a negative integer.
- * The useful domain for relative error is limited by overflow
- * of the single precision exponential function.
- *
- * See also hyperg.c.
- *
- */
- /* iv.c */
-/* Modified Bessel function of noninteger order */
-/* If x < 0, then v must be an integer. */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-extern float MAXNUMF;
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-float hypergf(float, float, float);
-float expf(float), gammaf(float), logf(float), floorf(float);
-
-float ivf( float v, float x )
-{
-int sign;
-float t, ax;
-
-/* If v is a negative integer, invoke symmetry */
-t = floorf(v);
-if( v < 0.0 )
- {
- if( t == v )
- {
- v = -v; /* symmetry */
- t = -t;
- }
- }
-/* If x is negative, require v to be an integer */
-sign = 1;
-if( x < 0.0 )
- {
- if( t != v )
- {
- mtherr( "ivf", DOMAIN );
- return( 0.0 );
- }
- if( v != 2.0 * floorf(v/2.0) )
- sign = -1;
- }
-
-/* Avoid logarithm singularity */
-if( x == 0.0 )
- {
- if( v == 0.0 )
- return( 1.0 );
- if( v < 0.0 )
- {
- mtherr( "ivf", OVERFLOW );
- return( MAXNUMF );
- }
- else
- return( 0.0 );
- }
-
-ax = fabsf(x);
-t = v * logf( 0.5 * ax ) - x;
-t = sign * expf(t) / gammaf( v + 1.0 );
-ax = v + 0.5;
-return( t * hypergf( ax, 2.0 * ax, 2.0 * x ) );
-}
diff --git a/libm/float/j0f.c b/libm/float/j0f.c
deleted file mode 100644
index 2b0d4a5a4..000000000
--- a/libm/float/j0f.c
+++ /dev/null
@@ -1,228 +0,0 @@
-/* j0f.c
- *
- * Bessel function of order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, j0f();
- *
- * y = j0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order zero of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval the following polynomial
- * approximation is used:
- *
- *
- * 2 2 2
- * (w - r ) (w - r ) (w - r ) P(w)
- * 1 2 3
- *
- * 2
- * where w = x and the three r's are zeros of the function.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
- *
- * j0(x) = Modulus(x) cos( Phase(x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
- *
- */
- /* y0f.c
- *
- * Bessel function of the second kind, order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, y0f();
- *
- * y = y0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of the second kind, of order
- * zero, of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval a rational approximation
- * R(x) is employed to compute
- *
- * 2 2 2
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
- * 1 2 3
- *
- * Thus a call to j0() is required. The three zeros are removed
- * from R(x) to improve its numerical stability.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
- *
- * y0(x) = Modulus(x) sin( Phase(x) ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error, when y0(x) < 1; else relative error:
- *
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-static float MO[8] = {
--6.838999669318810E-002f,
- 1.864949361379502E-001f,
--2.145007480346739E-001f,
- 1.197549369473540E-001f,
--3.560281861530129E-003f,
--4.969382655296620E-002f,
--3.355424622293709E-006f,
- 7.978845717621440E-001f
-};
-
-static float PH[8] = {
- 3.242077816988247E+001f,
--3.630592630518434E+001f,
- 1.756221482109099E+001f,
--4.974978466280903E+000f,
- 1.001973420681837E+000f,
--1.939906941791308E-001f,
- 6.490598792654666E-002f,
--1.249992184872738E-001f
-};
-
-static float YP[5] = {
- 9.454583683980369E-008f,
--9.413212653797057E-006f,
- 5.344486707214273E-004f,
--1.584289289821316E-002f,
- 1.707584643733568E-001f
-};
-
-float YZ1 = 0.43221455686510834878f;
-float YZ2 = 22.401876406482861405f;
-float YZ3 = 64.130620282338755553f;
-
-static float DR1 = 5.78318596294678452118f;
-/*
-static float DR2 = 30.4712623436620863991;
-static float DR3 = 74.887006790695183444889;
-*/
-
-static float JP[5] = {
--6.068350350393235E-008f,
- 6.388945720783375E-006f,
--3.969646342510940E-004f,
- 1.332913422519003E-002f,
--1.729150680240724E-001f
-};
-extern float PIO4F;
-
-
-float polevlf(float, float *, int);
-float logf(float), sinf(float), cosf(float), sqrtf(float);
-
-float j0f( float xx )
-{
-float x, w, z, p, q, xn;
-
-
-if( xx < 0 )
- x = -xx;
-else
- x = xx;
-
-if( x <= 2.0f )
- {
- z = x * x;
- if( x < 1.0e-3f )
- return( 1.0f - 0.25f*z );
-
- p = (z-DR1) * polevlf( z, JP, 4);
- return( p );
- }
-
-q = 1.0f/x;
-w = sqrtf(q);
-
-p = w * polevlf( q, MO, 7);
-w = q*q;
-xn = q * polevlf( w, PH, 7) - PIO4F;
-p = p * cosf(xn + x);
-return(p);
-}
-
-/* y0() 2 */
-/* Bessel function of second kind, order zero */
-
-/* Rational approximation coefficients YP[] are used for x < 6.5.
- * The function computed is y0(x) - 2 ln(x) j0(x) / pi,
- * whose value at x = 0 is 2 * ( log(0.5) + EUL ) / pi
- * = 0.073804295108687225 , EUL is Euler's constant.
- */
-
-static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */
-extern float MAXNUMF;
-
-float y0f( float xx )
-{
-float x, w, z, p, q, xn;
-
-
-x = xx;
-if( x <= 2.0f )
- {
- if( x <= 0.0f )
- {
- mtherr( "y0f", DOMAIN );
- return( -MAXNUMF );
- }
- z = x * x;
-/* w = (z-YZ1)*(z-YZ2)*(z-YZ3) * polevlf( z, YP, 4);*/
- w = (z-YZ1) * polevlf( z, YP, 4);
- w += TWOOPI * logf(x) * j0f(x);
- return( w );
- }
-
-q = 1.0f/x;
-w = sqrtf(q);
-
-p = w * polevlf( q, MO, 7);
-w = q*q;
-xn = q * polevlf( w, PH, 7) - PIO4F;
-p = p * sinf(xn + x);
-return( p );
-}
diff --git a/libm/float/j0tst.c b/libm/float/j0tst.c
deleted file mode 100644
index e5a5607d7..000000000
--- a/libm/float/j0tst.c
+++ /dev/null
@@ -1,43 +0,0 @@
-float z[20] = {
-2.4048254489898681641,
-5.5200781822204589844,
-8.6537275314331054687,
-11.791533470153808594,
-14.930917739868164062,
-18.071063995361328125,
-21.211637496948242188,
-24.352472305297851563,
-27.493478775024414062,
-30.634607315063476562,
-33.775821685791015625,
-36.9170989990234375,
-40.0584259033203125,
-43.19979095458984375,
-46.3411865234375,
-49.482608795166015625,
-52.624050140380859375,
-55.76551055908203125,
-58.906982421875,
-62.04846954345703125,
-};
-
-/* #if ANSIC */
-#if __STDC__
-float j0f(float);
-#else
-float j0f();
-#endif
-
-int main()
-{
-float y;
-int i;
-
-for (i = 0; i< 20; i++)
- {
- y = j0f(z[i]);
- printf("%.9e\n", y);
- }
-exit(0);
-}
-
diff --git a/libm/float/j1f.c b/libm/float/j1f.c
deleted file mode 100644
index 4306e9747..000000000
--- a/libm/float/j1f.c
+++ /dev/null
@@ -1,211 +0,0 @@
-/* j1f.c
- *
- * Bessel function of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, j1f();
- *
- * y = j1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order one of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval a polynomial approximation
- * 2
- * (w - r ) x P(w)
- * 1
- * 2
- * is used, where w = x and r is the first zero of the function.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
- *
- * j0(x) = Modulus(x) cos( Phase(x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 1.2e-7 2.5e-8
- * IEEE 2, 32 100000 2.0e-7 5.3e-8
- *
- *
- */
- /* y1.c
- *
- * Bessel function of second kind of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, y1();
- *
- * y = y1( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of the second kind of order one
- * of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval a rational approximation
- * R(x) is employed to compute
- *
- * 2
- * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
- * 1
- *
- * Thus a call to j1() is required.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
- *
- * y0(x) = Modulus(x) sin( Phase(x) ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 2.2e-7 4.6e-8
- * IEEE 2, 32 100000 1.9e-7 5.3e-8
- *
- * (error criterion relative when |y1| > 1).
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-
-static float JP[5] = {
--4.878788132172128E-009f,
- 6.009061827883699E-007f,
--4.541343896997497E-005f,
- 1.937383947804541E-003f,
--3.405537384615824E-002f
-};
-
-static float YP[5] = {
- 8.061978323326852E-009f,
--9.496460629917016E-007f,
- 6.719543806674249E-005f,
--2.641785726447862E-003f,
- 4.202369946500099E-002f
-};
-
-static float MO1[8] = {
- 6.913942741265801E-002f,
--2.284801500053359E-001f,
- 3.138238455499697E-001f,
--2.102302420403875E-001f,
- 5.435364690523026E-003f,
- 1.493389585089498E-001f,
- 4.976029650847191E-006f,
- 7.978845453073848E-001f
-};
-
-static float PH1[8] = {
--4.497014141919556E+001f,
- 5.073465654089319E+001f,
--2.485774108720340E+001f,
- 7.222973196770240E+000f,
--1.544842782180211E+000f,
- 3.503787691653334E-001f,
--1.637986776941202E-001f,
- 3.749989509080821E-001f
-};
-
-static float YO1 = 4.66539330185668857532f;
-static float Z1 = 1.46819706421238932572E1f;
-
-static float THPIO4F = 2.35619449019234492885f; /* 3*pi/4 */
-static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */
-extern float PIO4;
-
-
-float polevlf(float, float *, int);
-float logf(float), sinf(float), cosf(float), sqrtf(float);
-
-float j1f( float xx )
-{
-float x, w, z, p, q, xn;
-
-
-x = xx;
-if( x < 0 )
- x = -xx;
-
-if( x <= 2.0f )
- {
- z = x * x;
- p = (z-Z1) * x * polevlf( z, JP, 4 );
- return( p );
- }
-
-q = 1.0f/x;
-w = sqrtf(q);
-
-p = w * polevlf( q, MO1, 7);
-w = q*q;
-xn = q * polevlf( w, PH1, 7) - THPIO4F;
-p = p * cosf(xn + x);
-return(p);
-}
-
-
-
-
-extern float MAXNUMF;
-
-float y1f( float xx )
-{
-float x, w, z, p, q, xn;
-
-
-x = xx;
-if( x <= 2.0f )
- {
- if( x <= 0.0f )
- {
- mtherr( "y1f", DOMAIN );
- return( -MAXNUMF );
- }
- z = x * x;
- w = (z - YO1) * x * polevlf( z, YP, 4 );
- w += TWOOPI * ( j1f(x) * logf(x) - 1.0f/x );
- return( w );
- }
-
-q = 1.0f/x;
-w = sqrtf(q);
-
-p = w * polevlf( q, MO1, 7);
-w = q*q;
-xn = q * polevlf( w, PH1, 7) - THPIO4F;
-p = p * sinf(xn + x);
-return(p);
-}
diff --git a/libm/float/jnf.c b/libm/float/jnf.c
deleted file mode 100644
index de358e0ef..000000000
--- a/libm/float/jnf.c
+++ /dev/null
@@ -1,124 +0,0 @@
-/* jnf.c
- *
- * Bessel function of integer order
- *
- *
- *
- * SYNOPSIS:
- *
- * int n;
- * float x, y, jnf();
- *
- * y = jnf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order n, where n is a
- * (possibly negative) integer.
- *
- * The ratio of jn(x) to j0(x) is computed by backward
- * recurrence. First the ratio jn/jn-1 is found by a
- * continued fraction expansion. Then the recurrence
- * relating successive orders is applied until j0 or j1 is
- * reached.
- *
- * If n = 0 or 1 the routine for j0 or j1 is called
- * directly.
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic range # trials peak rms
- * IEEE 0, 15 30000 3.6e-7 3.6e-8
- *
- *
- * Not suitable for large n or x. Use jvf() instead.
- *
- */
-
-/* jn.c
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-#include <math.h>
-
-extern float MACHEPF;
-
-float j0f(float), j1f(float);
-
-float jnf( int n, float xx )
-{
-float x, pkm2, pkm1, pk, xk, r, ans, xinv, sign;
-int k;
-
-x = xx;
-sign = 1.0;
-if( n < 0 )
- {
- n = -n;
- if( (n & 1) != 0 ) /* -1**n */
- sign = -1.0;
- }
-
-if( n == 0 )
- return( sign * j0f(x) );
-if( n == 1 )
- return( sign * j1f(x) );
-if( n == 2 )
- return( sign * (2.0 * j1f(x) / x - j0f(x)) );
-
-/*
-if( x < MACHEPF )
- return( 0.0 );
-*/
-
-/* continued fraction */
-k = 24;
-pk = 2 * (n + k);
-ans = pk;
-xk = x * x;
-
-do
- {
- pk -= 2.0;
- ans = pk - (xk/ans);
- }
-while( --k > 0 );
-/*ans = x/ans;*/
-
-/* backward recurrence */
-
-pk = 1.0;
-/*pkm1 = 1.0/ans;*/
-xinv = 1.0/x;
-pkm1 = ans * xinv;
-k = n-1;
-r = (float )(2 * k);
-
-do
- {
- pkm2 = (pkm1 * r - pk * x) * xinv;
- pk = pkm1;
- pkm1 = pkm2;
- r -= 2.0;
- }
-while( --k > 0 );
-
-r = pk;
-if( r < 0 )
- r = -r;
-ans = pkm1;
-if( ans < 0 )
- ans = -ans;
-
-if( r > ans ) /* if( fabs(pk) > fabs(pkm1) ) */
- ans = sign * j1f(x)/pk;
-else
- ans = sign * j0f(x)/pkm1;
-return( ans );
-}
diff --git a/libm/float/jvf.c b/libm/float/jvf.c
deleted file mode 100644
index 268a8e4eb..000000000
--- a/libm/float/jvf.c
+++ /dev/null
@@ -1,848 +0,0 @@
-/* jvf.c
- *
- * Bessel function of noninteger order
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, jvf();
- *
- * y = jvf( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order v of the argument,
- * where v is real. Negative x is allowed if v is an integer.
- *
- * Several expansions are included: the ascending power
- * series, the Hankel expansion, and two transitional
- * expansions for large v. If v is not too large, it
- * is reduced by recurrence to a region of best accuracy.
- *
- * The single precision routine accepts negative v, but with
- * reduced accuracy.
- *
- *
- *
- * ACCURACY:
- * Results for integer v are indicated by *.
- * Error criterion is absolute, except relative when |jv()| > 1.
- *
- * arithmetic domain # trials peak rms
- * v x
- * IEEE 0,125 0,125 30000 2.0e-6 2.0e-7
- * IEEE -17,0 0,125 30000 1.1e-5 4.0e-7
- * IEEE -100,0 0,125 3000 1.5e-4 7.8e-6
- */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-#define DEBUG 0
-
-extern float MAXNUMF, MACHEPF, MINLOGF, MAXLOGF, PIF;
-extern int sgngamf;
-
-/* BIG = 1/MACHEPF */
-#define BIG 16777216.
-
-#ifdef ANSIC
-float floorf(float), j0f(float), j1f(float);
-static float jnxf(float, float);
-static float jvsf(float, float);
-static float hankelf(float, float);
-static float jntf(float, float);
-static float recurf( float *, float, float * );
-float sqrtf(float), sinf(float), cosf(float);
-float lgamf(float), expf(float), logf(float), powf(float, float);
-float gammaf(float), cbrtf(float), acosf(float);
-int airyf(float, float *, float *, float *, float *);
-float polevlf(float, float *, int);
-#else
-float floorf(), j0f(), j1f();
-float sqrtf(), sinf(), cosf();
-float lgamf(), expf(), logf(), powf(), gammaf();
-float cbrtf(), polevlf(), acosf();
-void airyf();
-static float recurf(), jvsf(), hankelf(), jnxf(), jntf(), jvsf();
-#endif
-
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-float jvf( float nn, float xx )
-{
-float n, x, k, q, t, y, an, sign;
-int i, nint;
-
-n = nn;
-x = xx;
-nint = 0; /* Flag for integer n */
-sign = 1.0; /* Flag for sign inversion */
-an = fabsf( n );
-y = floorf( an );
-if( y == an )
- {
- nint = 1;
- i = an - 16384.0 * floorf( an/16384.0 );
- if( n < 0.0 )
- {
- if( i & 1 )
- sign = -sign;
- n = an;
- }
- if( x < 0.0 )
- {
- if( i & 1 )
- sign = -sign;
- x = -x;
- }
- if( n == 0.0 )
- return( j0f(x) );
- if( n == 1.0 )
- return( sign * j1f(x) );
- }
-
-if( (x < 0.0) && (y != an) )
- {
- mtherr( "jvf", DOMAIN );
- y = 0.0;
- goto done;
- }
-
-y = fabsf(x);
-
-if( y < MACHEPF )
- goto underf;
-
-/* Easy cases - x small compared to n */
-t = 3.6 * sqrtf(an);
-if( y < t )
- return( sign * jvsf(n,x) );
-
-/* x large compared to n */
-k = 3.6 * sqrtf(y);
-if( (an < k) && (y > 6.0) )
- return( sign * hankelf(n,x) );
-
-if( (n > -100) && (n < 14.0) )
- {
-/* Note: if x is too large, the continued
- * fraction will fail; but then the
- * Hankel expansion can be used.
- */
- if( nint != 0 )
- {
- k = 0.0;
- q = recurf( &n, x, &k );
- if( k == 0.0 )
- {
- y = j0f(x)/q;
- goto done;
- }
- if( k == 1.0 )
- {
- y = j1f(x)/q;
- goto done;
- }
- }
-
- if( n >= 0.0 )
- {
-/* Recur backwards from a larger value of n
- */
- if( y > 1.3 * an )
- goto recurdwn;
- if( an > 1.3 * y )
- goto recurdwn;
- k = n;
- y = 2.0*(y+an+1.0);
- if( (y - n) > 33.0 )
- y = n + 33.0;
- y = n + floorf(y-n);
- q = recurf( &y, x, &k );
- y = jvsf(y,x) * q;
- goto done;
- }
-recurdwn:
- if( an > (k + 3.0) )
- {
-/* Recur backwards from n to k
- */
- if( n < 0.0 )
- k = -k;
- q = n - floorf(n);
- k = floorf(k) + q;
- if( n > 0.0 )
- q = recurf( &n, x, &k );
- else
- {
- t = k;
- k = n;
- q = recurf( &t, x, &k );
- k = t;
- }
- if( q == 0.0 )
- {
-underf:
- y = 0.0;
- goto done;
- }
- }
- else
- {
- k = n;
- q = 1.0;
- }
-
-/* boundary between convergence of
- * power series and Hankel expansion
- */
- t = fabsf(k);
- if( t < 26.0 )
- t = (0.0083*t + 0.09)*t + 12.9;
- else
- t = 0.9 * t;
-
- if( y > t ) /* y = |x| */
- y = hankelf(k,x);
- else
- y = jvsf(k,x);
-#if DEBUG
-printf( "y = %.16e, q = %.16e\n", y, q );
-#endif
- if( n > 0.0 )
- y /= q;
- else
- y *= q;
- }
-
-else
- {
-/* For large positive n, use the uniform expansion
- * or the transitional expansion.
- * But if x is of the order of n**2,
- * these may blow up, whereas the
- * Hankel expansion will then work.
- */
- if( n < 0.0 )
- {
- mtherr( "jvf", TLOSS );
- y = 0.0;
- goto done;
- }
- t = y/an;
- t /= an;
- if( t > 0.3 )
- y = hankelf(n,x);
- else
- y = jnxf(n,x);
- }
-
-done: return( sign * y);
-}
-
-/* Reduce the order by backward recurrence.
- * AMS55 #9.1.27 and 9.1.73.
- */
-
-static float recurf( float *n, float xx, float *newn )
-{
-float x, pkm2, pkm1, pk, pkp1, qkm2, qkm1;
-float k, ans, qk, xk, yk, r, t, kf, xinv;
-static float big = BIG;
-int nflag, ctr;
-
-x = xx;
-/* continued fraction for Jn(x)/Jn-1(x) */
-if( *n < 0.0 )
- nflag = 1;
-else
- nflag = 0;
-
-fstart:
-
-#if DEBUG
-printf( "n = %.6e, newn = %.6e, cfrac = ", *n, *newn );
-#endif
-
-pkm2 = 0.0;
-qkm2 = 1.0;
-pkm1 = x;
-qkm1 = *n + *n;
-xk = -x * x;
-yk = qkm1;
-ans = 1.0;
-ctr = 0;
-do
- {
- yk += 2.0;
- pk = pkm1 * yk + pkm2 * xk;
- qk = qkm1 * yk + qkm2 * xk;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if( qk != 0 )
- r = pk/qk;
- else
- r = 0.0;
- if( r != 0 )
- {
- t = fabsf( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
-
- if( t < MACHEPF )
- goto done;
-
- if( fabsf(pk) > big )
- {
- pkm2 *= MACHEPF;
- pkm1 *= MACHEPF;
- qkm2 *= MACHEPF;
- qkm1 *= MACHEPF;
- }
- }
-while( t > MACHEPF );
-
-done:
-
-#if DEBUG
-printf( "%.6e\n", ans );
-#endif
-
-/* Change n to n-1 if n < 0 and the continued fraction is small
- */
-if( nflag > 0 )
- {
- if( fabsf(ans) < 0.125 )
- {
- nflag = -1;
- *n = *n - 1.0;
- goto fstart;
- }
- }
-
-
-kf = *newn;
-
-/* backward recurrence
- * 2k
- * J (x) = --- J (x) - J (x)
- * k-1 x k k+1
- */
-
-pk = 1.0;
-pkm1 = 1.0/ans;
-k = *n - 1.0;
-r = 2 * k;
-xinv = 1.0/x;
-do
- {
- pkm2 = (pkm1 * r - pk * x) * xinv;
- pkp1 = pk;
- pk = pkm1;
- pkm1 = pkm2;
- r -= 2.0;
-#if 0
- t = fabsf(pkp1) + fabsf(pk);
- if( (k > (kf + 2.5)) && (fabsf(pkm1) < 0.25*t) )
- {
- k -= 1.0;
- t = x*x;
- pkm2 = ( (r*(r+2.0)-t)*pk - r*x*pkp1 )/t;
- pkp1 = pk;
- pk = pkm1;
- pkm1 = pkm2;
- r -= 2.0;
- }
-#endif
- k -= 1.0;
- }
-while( k > (kf + 0.5) );
-
-#if 0
-/* Take the larger of the last two iterates
- * on the theory that it may have less cancellation error.
- */
-if( (kf >= 0.0) && (fabsf(pk) > fabsf(pkm1)) )
- {
- k += 1.0;
- pkm2 = pk;
- }
-#endif
-
-*newn = k;
-#if DEBUG
-printf( "newn %.6e\n", k );
-#endif
-return( pkm2 );
-}
-
-
-
-/* Ascending power series for Jv(x).
- * AMS55 #9.1.10.
- */
-
-static float jvsf( float nn, float xx )
-{
-float n, x, t, u, y, z, k, ay;
-
-#if DEBUG
-printf( "jvsf: " );
-#endif
-n = nn;
-x = xx;
-z = -0.25 * x * x;
-u = 1.0;
-y = u;
-k = 1.0;
-t = 1.0;
-
-while( t > MACHEPF )
- {
- u *= z / (k * (n+k));
- y += u;
- k += 1.0;
- t = fabsf(u);
- if( (ay = fabsf(y)) > 1.0 )
- t /= ay;
- }
-
-if( x < 0.0 )
- {
- y = y * powf( 0.5 * x, n ) / gammaf( n + 1.0 );
- }
-else
- {
- t = n * logf(0.5*x) - lgamf(n + 1.0);
- if( t < -MAXLOGF )
- {
- return( 0.0 );
- }
- if( t > MAXLOGF )
- {
- t = logf(y) + t;
- if( t > MAXLOGF )
- {
- mtherr( "jvf", OVERFLOW );
- return( MAXNUMF );
- }
- else
- {
- y = sgngamf * expf(t);
- return(y);
- }
- }
- y = sgngamf * y * expf( t );
- }
-#if DEBUG
-printf( "y = %.8e\n", y );
-#endif
-return(y);
-}
-
-/* Hankel's asymptotic expansion
- * for large x.
- * AMS55 #9.2.5.
- */
-static float hankelf( float nn, float xx )
-{
-float n, x, t, u, z, k, sign, conv;
-float p, q, j, m, pp, qq;
-int flag;
-
-#if DEBUG
-printf( "hankelf: " );
-#endif
-n = nn;
-x = xx;
-m = 4.0*n*n;
-j = 1.0;
-z = 8.0 * x;
-k = 1.0;
-p = 1.0;
-u = (m - 1.0)/z;
-q = u;
-sign = 1.0;
-conv = 1.0;
-flag = 0;
-t = 1.0;
-pp = 1.0e38;
-qq = 1.0e38;
-
-while( t > MACHEPF )
- {
- k += 2.0;
- j += 1.0;
- sign = -sign;
- u *= (m - k * k)/(j * z);
- p += sign * u;
- k += 2.0;
- j += 1.0;
- u *= (m - k * k)/(j * z);
- q += sign * u;
- t = fabsf(u/p);
- if( t < conv )
- {
- conv = t;
- qq = q;
- pp = p;
- flag = 1;
- }
-/* stop if the terms start getting larger */
- if( (flag != 0) && (t > conv) )
- {
-#if DEBUG
- printf( "Hankel: convergence to %.4E\n", conv );
-#endif
- goto hank1;
- }
- }
-
-hank1:
-u = x - (0.5*n + 0.25) * PIF;
-t = sqrtf( 2.0/(PIF*x) ) * ( pp * cosf(u) - qq * sinf(u) );
-return( t );
-}
-
-
-/* Asymptotic expansion for large n.
- * AMS55 #9.3.35.
- */
-
-static float lambda[] = {
- 1.0,
- 1.041666666666666666666667E-1,
- 8.355034722222222222222222E-2,
- 1.282265745563271604938272E-1,
- 2.918490264641404642489712E-1,
- 8.816272674437576524187671E-1,
- 3.321408281862767544702647E+0,
- 1.499576298686255465867237E+1,
- 7.892301301158651813848139E+1,
- 4.744515388682643231611949E+2,
- 3.207490090890661934704328E+3
-};
-static float mu[] = {
- 1.0,
- -1.458333333333333333333333E-1,
- -9.874131944444444444444444E-2,
- -1.433120539158950617283951E-1,
- -3.172272026784135480967078E-1,
- -9.424291479571202491373028E-1,
- -3.511203040826354261542798E+0,
- -1.572726362036804512982712E+1,
- -8.228143909718594444224656E+1,
- -4.923553705236705240352022E+2,
- -3.316218568547972508762102E+3
-};
-static float P1[] = {
- -2.083333333333333333333333E-1,
- 1.250000000000000000000000E-1
-};
-static float P2[] = {
- 3.342013888888888888888889E-1,
- -4.010416666666666666666667E-1,
- 7.031250000000000000000000E-2
-};
-static float P3[] = {
- -1.025812596450617283950617E+0,
- 1.846462673611111111111111E+0,
- -8.912109375000000000000000E-1,
- 7.324218750000000000000000E-2
-};
-static float P4[] = {
- 4.669584423426247427983539E+0,
- -1.120700261622299382716049E+1,
- 8.789123535156250000000000E+0,
- -2.364086914062500000000000E+0,
- 1.121520996093750000000000E-1
-};
-static float P5[] = {
- -2.8212072558200244877E1,
- 8.4636217674600734632E1,
- -9.1818241543240017361E1,
- 4.2534998745388454861E1,
- -7.3687943594796316964E0,
- 2.27108001708984375E-1
-};
-static float P6[] = {
- 2.1257013003921712286E2,
- -7.6525246814118164230E2,
- 1.0599904525279998779E3,
- -6.9957962737613254123E2,
- 2.1819051174421159048E2,
- -2.6491430486951555525E1,
- 5.7250142097473144531E-1
-};
-static float P7[] = {
- -1.9194576623184069963E3,
- 8.0617221817373093845E3,
- -1.3586550006434137439E4,
- 1.1655393336864533248E4,
- -5.3056469786134031084E3,
- 1.2009029132163524628E3,
- -1.0809091978839465550E2,
- 1.7277275025844573975E0
-};
-
-
-static float jnxf( float nn, float xx )
-{
-float n, x, zeta, sqz, zz, zp, np;
-float cbn, n23, t, z, sz;
-float pp, qq, z32i, zzi;
-float ak, bk, akl, bkl;
-int sign, doa, dob, nflg, k, s, tk, tkp1, m;
-static float u[8];
-static float ai, aip, bi, bip;
-
-n = nn;
-x = xx;
-/* Test for x very close to n.
- * Use expansion for transition region if so.
- */
-cbn = cbrtf(n);
-z = (x - n)/cbn;
-if( (fabsf(z) <= 0.7) || (n < 0.0) )
- return( jntf(n,x) );
-z = x/n;
-zz = 1.0 - z*z;
-if( zz == 0.0 )
- return(0.0);
-
-if( zz > 0.0 )
- {
- sz = sqrtf( zz );
- t = 1.5 * (logf( (1.0+sz)/z ) - sz ); /* zeta ** 3/2 */
- zeta = cbrtf( t * t );
- nflg = 1;
- }
-else
- {
- sz = sqrtf(-zz);
- t = 1.5 * (sz - acosf(1.0/z));
- zeta = -cbrtf( t * t );
- nflg = -1;
- }
-z32i = fabsf(1.0/t);
-sqz = cbrtf(t);
-
-/* Airy function */
-n23 = cbrtf( n * n );
-t = n23 * zeta;
-
-#if DEBUG
-printf("zeta %.5E, Airyf(%.5E)\n", zeta, t );
-#endif
-airyf( t, &ai, &aip, &bi, &bip );
-
-/* polynomials in expansion */
-u[0] = 1.0;
-zzi = 1.0/zz;
-u[1] = polevlf( zzi, P1, 1 )/sz;
-u[2] = polevlf( zzi, P2, 2 )/zz;
-u[3] = polevlf( zzi, P3, 3 )/(sz*zz);
-pp = zz*zz;
-u[4] = polevlf( zzi, P4, 4 )/pp;
-u[5] = polevlf( zzi, P5, 5 )/(pp*sz);
-pp *= zz;
-u[6] = polevlf( zzi, P6, 6 )/pp;
-u[7] = polevlf( zzi, P7, 7 )/(pp*sz);
-
-#if DEBUG
-for( k=0; k<=7; k++ )
- printf( "u[%d] = %.5E\n", k, u[k] );
-#endif
-
-pp = 0.0;
-qq = 0.0;
-np = 1.0;
-/* flags to stop when terms get larger */
-doa = 1;
-dob = 1;
-akl = MAXNUMF;
-bkl = MAXNUMF;
-
-for( k=0; k<=3; k++ )
- {
- tk = 2 * k;
- tkp1 = tk + 1;
- zp = 1.0;
- ak = 0.0;
- bk = 0.0;
- for( s=0; s<=tk; s++ )
- {
- if( doa )
- {
- if( (s & 3) > 1 )
- sign = nflg;
- else
- sign = 1;
- ak += sign * mu[s] * zp * u[tk-s];
- }
-
- if( dob )
- {
- m = tkp1 - s;
- if( ((m+1) & 3) > 1 )
- sign = nflg;
- else
- sign = 1;
- bk += sign * lambda[s] * zp * u[m];
- }
- zp *= z32i;
- }
-
- if( doa )
- {
- ak *= np;
- t = fabsf(ak);
- if( t < akl )
- {
- akl = t;
- pp += ak;
- }
- else
- doa = 0;
- }
-
- if( dob )
- {
- bk += lambda[tkp1] * zp * u[0];
- bk *= -np/sqz;
- t = fabsf(bk);
- if( t < bkl )
- {
- bkl = t;
- qq += bk;
- }
- else
- dob = 0;
- }
-#if DEBUG
- printf("a[%d] %.5E, b[%d] %.5E\n", k, ak, k, bk );
-#endif
- if( np < MACHEPF )
- break;
- np /= n*n;
- }
-
-/* normalizing factor ( 4*zeta/(1 - z**2) )**1/4 */
-t = 4.0 * zeta/zz;
-t = sqrtf( sqrtf(t) );
-
-t *= ai*pp/cbrtf(n) + aip*qq/(n23*n);
-return(t);
-}
-
-/* Asymptotic expansion for transition region,
- * n large and x close to n.
- * AMS55 #9.3.23.
- */
-
-static float PF2[] = {
- -9.0000000000000000000e-2,
- 8.5714285714285714286e-2
-};
-static float PF3[] = {
- 1.3671428571428571429e-1,
- -5.4920634920634920635e-2,
- -4.4444444444444444444e-3
-};
-static float PF4[] = {
- 1.3500000000000000000e-3,
- -1.6036054421768707483e-1,
- 4.2590187590187590188e-2,
- 2.7330447330447330447e-3
-};
-static float PG1[] = {
- -2.4285714285714285714e-1,
- 1.4285714285714285714e-2
-};
-static float PG2[] = {
- -9.0000000000000000000e-3,
- 1.9396825396825396825e-1,
- -1.1746031746031746032e-2
-};
-static float PG3[] = {
- 1.9607142857142857143e-2,
- -1.5983694083694083694e-1,
- 6.3838383838383838384e-3
-};
-
-
-static float jntf( float nn, float xx )
-{
-float n, x, z, zz, z3;
-float cbn, n23, cbtwo;
-float ai, aip, bi, bip; /* Airy functions */
-float nk, fk, gk, pp, qq;
-float F[5], G[4];
-int k;
-
-n = nn;
-x = xx;
-cbn = cbrtf(n);
-z = (x - n)/cbn;
-cbtwo = cbrtf( 2.0 );
-
-/* Airy function */
-zz = -cbtwo * z;
-airyf( zz, &ai, &aip, &bi, &bip );
-
-/* polynomials in expansion */
-zz = z * z;
-z3 = zz * z;
-F[0] = 1.0;
-F[1] = -z/5.0;
-F[2] = polevlf( z3, PF2, 1 ) * zz;
-F[3] = polevlf( z3, PF3, 2 );
-F[4] = polevlf( z3, PF4, 3 ) * z;
-G[0] = 0.3 * zz;
-G[1] = polevlf( z3, PG1, 1 );
-G[2] = polevlf( z3, PG2, 2 ) * z;
-G[3] = polevlf( z3, PG3, 2 ) * zz;
-#if DEBUG
-for( k=0; k<=4; k++ )
- printf( "F[%d] = %.5E\n", k, F[k] );
-for( k=0; k<=3; k++ )
- printf( "G[%d] = %.5E\n", k, G[k] );
-#endif
-pp = 0.0;
-qq = 0.0;
-nk = 1.0;
-n23 = cbrtf( n * n );
-
-for( k=0; k<=4; k++ )
- {
- fk = F[k]*nk;
- pp += fk;
- if( k != 4 )
- {
- gk = G[k]*nk;
- qq += gk;
- }
-#if DEBUG
- printf("fk[%d] %.5E, gk[%d] %.5E\n", k, fk, k, gk );
-#endif
- nk /= n23;
- }
-
-fk = cbtwo * ai * pp/cbn + cbrtf(4.0) * aip * qq/n;
-return(fk);
-}
diff --git a/libm/float/k0f.c b/libm/float/k0f.c
deleted file mode 100644
index e0e0698ac..000000000
--- a/libm/float/k0f.c
+++ /dev/null
@@ -1,175 +0,0 @@
-/* k0f.c
- *
- * Modified Bessel function, third kind, order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k0f();
- *
- * y = k0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of the third kind
- * of order zero of the argument.
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at 2000 random points between 0 and 8. Peak absolute
- * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 7.8e-7 8.5e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * K0 domain x <= 0 MAXNUM
- *
- */
- /* k0ef()
- *
- * Modified Bessel function, third kind, order zero,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k0ef();
- *
- * y = k0ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of the third kind of order zero of the argument.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 8.1e-7 7.8e-8
- * See k0().
- *
- */
-
-/*
-Cephes Math Library Release 2.0: April, 1987
-Copyright 1984, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* Chebyshev coefficients for K0(x) + log(x/2) I0(x)
- * in the interval [0,2]. The odd order coefficients are all
- * zero; only the even order coefficients are listed.
- *
- * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL.
- */
-
-static float A[] =
-{
- 1.90451637722020886025E-9f,
- 2.53479107902614945675E-7f,
- 2.28621210311945178607E-5f,
- 1.26461541144692592338E-3f,
- 3.59799365153615016266E-2f,
- 3.44289899924628486886E-1f,
--5.35327393233902768720E-1f
-};
-
-
-
-/* Chebyshev coefficients for exp(x) sqrt(x) K0(x)
- * in the inverted interval [2,infinity].
- *
- * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2).
- */
-
-static float B[] = {
--1.69753450938905987466E-9f,
- 8.57403401741422608519E-9f,
--4.66048989768794782956E-8f,
- 2.76681363944501510342E-7f,
--1.83175552271911948767E-6f,
- 1.39498137188764993662E-5f,
--1.28495495816278026384E-4f,
- 1.56988388573005337491E-3f,
--3.14481013119645005427E-2f,
- 2.44030308206595545468E0f
-};
-
-/* k0.c */
-
-extern float MAXNUMF;
-
-#ifdef ANSIC
-float chbevlf(float, float *, int);
-float expf(float), i0f(float), logf(float), sqrtf(float);
-#else
-float chbevlf(), expf(), i0f(), logf(), sqrtf();
-#endif
-
-
-float k0f( float xx )
-{
-float x, y, z;
-
-x = xx;
-if( x <= 0.0f )
- {
- mtherr( "k0f", DOMAIN );
- return( MAXNUMF );
- }
-
-if( x <= 2.0f )
- {
- y = x * x - 2.0f;
- y = chbevlf( y, A, 7 ) - logf( 0.5f * x ) * i0f(x);
- return( y );
- }
-z = 8.0f/x - 2.0f;
-y = expf(-x) * chbevlf( z, B, 10 ) / sqrtf(x);
-return(y);
-}
-
-
-
-float k0ef( float xx )
-{
-float x, y;
-
-
-x = xx;
-if( x <= 0.0f )
- {
- mtherr( "k0ef", DOMAIN );
- return( MAXNUMF );
- }
-
-if( x <= 2.0f )
- {
- y = x * x - 2.0f;
- y = chbevlf( y, A, 7 ) - logf( 0.5f * x ) * i0f(x);
- return( y * expf(x) );
- }
-
-y = chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x);
-return(y);
-}
diff --git a/libm/float/k1f.c b/libm/float/k1f.c
deleted file mode 100644
index d5b9bdfce..000000000
--- a/libm/float/k1f.c
+++ /dev/null
@@ -1,174 +0,0 @@
-/* k1f.c
- *
- * Modified Bessel function, third kind, order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k1f();
- *
- * y = k1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the modified Bessel function of the third kind
- * of order one of the argument.
- *
- * The range is partitioned into the two intervals [0,2] and
- * (2, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * k1 domain x <= 0 MAXNUM
- *
- */
- /* k1ef.c
- *
- * Modified Bessel function, third kind, order one,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, k1ef();
- *
- * y = k1ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of the third kind of order one of the argument:
- *
- * k1e(x) = exp(x) * k1(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
- * See k1().
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* Chebyshev coefficients for x(K1(x) - log(x/2) I1(x))
- * in the interval [0,2].
- *
- * lim(x->0){ x(K1(x) - log(x/2) I1(x)) } = 1.
- */
-
-#define MINNUMF 6.0e-39
-static float A[] =
-{
--2.21338763073472585583E-8f,
--2.43340614156596823496E-6f,
--1.73028895751305206302E-4f,
--6.97572385963986435018E-3f,
--1.22611180822657148235E-1f,
--3.53155960776544875667E-1f,
- 1.52530022733894777053E0f
-};
-
-
-
-
-/* Chebyshev coefficients for exp(x) sqrt(x) K1(x)
- * in the interval [2,infinity].
- *
- * lim(x->inf){ exp(x) sqrt(x) K1(x) } = sqrt(pi/2).
- */
-
-static float B[] =
-{
- 2.01504975519703286596E-9f,
--1.03457624656780970260E-8f,
- 5.74108412545004946722E-8f,
--3.50196060308781257119E-7f,
- 2.40648494783721712015E-6f,
--1.93619797416608296024E-5f,
- 1.95215518471351631108E-4f,
--2.85781685962277938680E-3f,
- 1.03923736576817238437E-1f,
- 2.72062619048444266945E0f
-};
-
-
-
-extern float MAXNUMF;
-#ifdef ANSIC
-float chbevlf(float, float *, int);
-float expf(float), i1f(float), logf(float), sqrtf(float);
-#else
-float chbevlf(), expf(), i1f(), logf(), sqrtf();
-#endif
-
-float k1f(float xx)
-{
-float x, y;
-
-x = xx;
-if( x <= MINNUMF )
- {
- mtherr( "k1f", DOMAIN );
- return( MAXNUMF );
- }
-
-if( x <= 2.0f )
- {
- y = x * x - 2.0f;
- y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x;
- return( y );
- }
-
-return( expf(-x) * chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) );
-
-}
-
-
-
-float k1ef( float xx )
-{
-float x, y;
-
-x = xx;
-if( x <= 0.0f )
- {
- mtherr( "k1ef", DOMAIN );
- return( MAXNUMF );
- }
-
-if( x <= 2.0f )
- {
- y = x * x - 2.0f;
- y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x;
- return( y * expf(x) );
- }
-
-return( chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) );
-
-}
diff --git a/libm/float/knf.c b/libm/float/knf.c
deleted file mode 100644
index 85e297390..000000000
--- a/libm/float/knf.c
+++ /dev/null
@@ -1,252 +0,0 @@
-/* knf.c
- *
- * Modified Bessel function, third kind, integer order
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, knf();
- * int n;
- *
- * y = knf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of the third kind
- * of order n of the argument.
- *
- * The range is partitioned into the two intervals [0,9.55] and
- * (9.55, infinity). An ascending power series is used in the
- * low range, and an asymptotic expansion in the high range.
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error, relative when function > 1:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 10000 2.0e-4 3.8e-6
- *
- * Error is high only near the crossover point x = 9.55
- * between the two expansions used.
- */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-
-*/
-
-
-/*
-Algorithm for Kn.
- n-1
- -n - (n-k-1)! 2 k
-K (x) = 0.5 (x/2) > -------- (-x /4)
- n - k!
- k=0
-
- inf. 2 k
- n n - (x /4)
- + (-1) 0.5(x/2) > {p(k+1) + p(n+k+1) - 2log(x/2)} ---------
- - k! (n+k)!
- k=0
-
-where p(m) is the psi function: p(1) = -EUL and
-
- m-1
- -
- p(m) = -EUL + > 1/k
- -
- k=1
-
-For large x,
- 2 2 2
- u-1 (u-1 )(u-3 )
-K (z) = sqrt(pi/2z) exp(-z) { 1 + ------- + ------------ + ...}
- v 1 2
- 1! (8z) 2! (8z)
-asymptotically, where
-
- 2
- u = 4 v .
-
-*/
-
-#include <math.h>
-
-#define EUL 5.772156649015328606065e-1
-#define MAXFAC 31
-extern float MACHEPF, MAXNUMF, MAXLOGF, PIF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-float expf(float), logf(float), sqrtf(float);
-
-float knf( int nnn, float xx )
-{
-float x, k, kf, nk1f, nkf, zn, t, s, z0, z;
-float ans, fn, pn, pk, zmn, tlg, tox;
-int i, n, nn;
-
-nn = nnn;
-x = xx;
-if( nn < 0 )
- n = -nn;
-else
- n = nn;
-
-if( n > MAXFAC )
- {
-overf:
- mtherr( "knf", OVERFLOW );
- return( MAXNUMF );
- }
-
-if( x <= 0.0 )
- {
- if( x < 0.0 )
- mtherr( "knf", DOMAIN );
- else
- mtherr( "knf", SING );
- return( MAXNUMF );
- }
-
-
-if( x > 9.55 )
- goto asymp;
-
-ans = 0.0;
-z0 = 0.25 * x * x;
-fn = 1.0;
-pn = 0.0;
-zmn = 1.0;
-tox = 2.0/x;
-
-if( n > 0 )
- {
- /* compute factorial of n and psi(n) */
- pn = -EUL;
- k = 1.0;
- for( i=1; i<n; i++ )
- {
- pn += 1.0/k;
- k += 1.0;
- fn *= k;
- }
-
- zmn = tox;
-
- if( n == 1 )
- {
- ans = 1.0/x;
- }
- else
- {
- nk1f = fn/n;
- kf = 1.0;
- s = nk1f;
- z = -z0;
- zn = 1.0;
- for( i=1; i<n; i++ )
- {
- nk1f = nk1f/(n-i);
- kf = kf * i;
- zn *= z;
- t = nk1f * zn / kf;
- s += t;
- if( (MAXNUMF - fabsf(t)) < fabsf(s) )
- goto overf;
- if( (tox > 1.0) && ((MAXNUMF/tox) < zmn) )
- goto overf;
- zmn *= tox;
- }
- s *= 0.5;
- t = fabsf(s);
- if( (zmn > 1.0) && ((MAXNUMF/zmn) < t) )
- goto overf;
- if( (t > 1.0) && ((MAXNUMF/t) < zmn) )
- goto overf;
- ans = s * zmn;
- }
- }
-
-
-tlg = 2.0 * logf( 0.5 * x );
-pk = -EUL;
-if( n == 0 )
- {
- pn = pk;
- t = 1.0;
- }
-else
- {
- pn = pn + 1.0/n;
- t = 1.0/fn;
- }
-s = (pk+pn-tlg)*t;
-k = 1.0;
-do
- {
- t *= z0 / (k * (k+n));
- pk += 1.0/k;
- pn += 1.0/(k+n);
- s += (pk+pn-tlg)*t;
- k += 1.0;
- }
-while( fabsf(t/s) > MACHEPF );
-
-s = 0.5 * s / zmn;
-if( n & 1 )
- s = -s;
-ans += s;
-
-return(ans);
-
-
-
-/* Asymptotic expansion for Kn(x) */
-/* Converges to 1.4e-17 for x > 18.4 */
-
-asymp:
-
-if( x > MAXLOGF )
- {
- mtherr( "knf", UNDERFLOW );
- return(0.0);
- }
-k = n;
-pn = 4.0 * k * k;
-pk = 1.0;
-z0 = 8.0 * x;
-fn = 1.0;
-t = 1.0;
-s = t;
-nkf = MAXNUMF;
-i = 0;
-do
- {
- z = pn - pk * pk;
- t = t * z /(fn * z0);
- nk1f = fabsf(t);
- if( (i >= n) && (nk1f > nkf) )
- {
- goto adone;
- }
- nkf = nk1f;
- s += t;
- fn += 1.0;
- pk += 2.0;
- i += 1;
- }
-while( fabsf(t/s) > MACHEPF );
-
-adone:
-ans = expf(-x) * sqrtf( PIF/(2.0*x) ) * s;
-return(ans);
-}
diff --git a/libm/float/log10f.c b/libm/float/log10f.c
deleted file mode 100644
index 6cb2e4d87..000000000
--- a/libm/float/log10f.c
+++ /dev/null
@@ -1,129 +0,0 @@
-/* log10f.c
- *
- * Common logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, log10f();
- *
- * y = log10f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns logarithm to the base 10 of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. The logarithm of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 100000 1.3e-7 3.4e-8
- * IEEE 0, MAXNUMF 100000 1.3e-7 2.6e-8
- *
- * In the tests over the interval [0, MAXNUM], the logarithms
- * of the random arguments were uniformly distributed over
- * [-MAXL10, MAXL10].
- *
- * ERROR MESSAGES:
- *
- * log10f singularity: x = 0; returns -MAXL10
- * log10f domain: x < 0; returns -MAXL10
- * MAXL10 = 38.230809449325611792
- */
-
-/*
-Cephes Math Library Release 2.1: December, 1988
-Copyright 1984, 1987, 1988 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-static char fname[] = {"log10"};
-
-/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- * 1/sqrt(2) <= x < sqrt(2)
- */
-static float P[] = {
- 7.0376836292E-2,
--1.1514610310E-1,
- 1.1676998740E-1,
--1.2420140846E-1,
- 1.4249322787E-1,
--1.6668057665E-1,
- 2.0000714765E-1,
--2.4999993993E-1,
- 3.3333331174E-1
-};
-
-
-#define SQRTH 0.70710678118654752440
-#define L102A 3.0078125E-1
-#define L102B 2.48745663981195213739E-4
-#define L10EA 4.3359375E-1
-#define L10EB 7.00731903251827651129E-4
-
-static float MAXL10 = 38.230809449325611792;
-
-float frexpf(float, int *), polevlf(float, float *, int);
-
-float log10f(float xx)
-{
-float x, y, z;
-int e;
-
-x = xx;
-/* Test for domain */
-if( x <= 0.0 )
- {
- if( x == 0.0 )
- mtherr( fname, SING );
- else
- mtherr( fname, DOMAIN );
- return( -MAXL10 );
- }
-
-/* separate mantissa from exponent */
-
-x = frexpf( x, &e );
-
-/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x) */
-
-if( x < SQRTH )
- {
- e -= 1;
- x = 2.0*x - 1.0;
- }
-else
- {
- x = x - 1.0;
- }
-
-
-/* rational form */
-z = x*x;
-y = x * ( z * polevlf( x, P, 8 ) );
-y = y - 0.5 * z; /* y - 0.5 * x**2 */
-
-/* multiply log of fraction by log10(e)
- * and base 2 exponent by log10(2)
- */
-z = (x + y) * L10EB; /* accumulate terms in order of size */
-z += y * L10EA;
-z += x * L10EA;
-x = e;
-z += x * L102B;
-z += x * L102A;
-
-
-return( z );
-}
diff --git a/libm/float/log2f.c b/libm/float/log2f.c
deleted file mode 100644
index 5cd5f4838..000000000
--- a/libm/float/log2f.c
+++ /dev/null
@@ -1,129 +0,0 @@
-/* log2f.c
- *
- * Base 2 logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, log2f();
- *
- * y = log2f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base 2 logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the base e
- * logarithm of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
- *
- * Otherwise, setting z = 2(x-1)/x+1),
- *
- * log(x) = z + z**3 P(z)/Q(z).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE exp(+-88) 100000 1.1e-7 2.4e-8
- * IEEE 0.5, 2.0 100000 1.1e-7 3.0e-8
- *
- * In the tests over the interval [exp(+-88)], the logarithms
- * of the random arguments were uniformly distributed.
- *
- * ERROR MESSAGES:
- *
- * log singularity: x = 0; returns MINLOGF/log(2)
- * log domain: x < 0; returns MINLOGF/log(2)
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-static char fname[] = {"log2"};
-
-/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)
- * 1/sqrt(2) <= x < sqrt(2)
- */
-
-static float P[] = {
- 7.0376836292E-2,
--1.1514610310E-1,
- 1.1676998740E-1,
--1.2420140846E-1,
- 1.4249322787E-1,
--1.6668057665E-1,
- 2.0000714765E-1,
--2.4999993993E-1,
- 3.3333331174E-1
-};
-
-#define LOG2EA 0.44269504088896340735992
-#define SQRTH 0.70710678118654752440
-extern float MINLOGF, LOGE2F;
-
-float frexpf(float, int *), polevlf(float, float *, int);
-
-float log2f(float xx)
-{
-float x, y, z;
-int e;
-
-x = xx;
-/* Test for domain */
-if( x <= 0.0 )
- {
- if( x == 0.0 )
- mtherr( fname, SING );
- else
- mtherr( fname, DOMAIN );
- return( MINLOGF/LOGE2F );
- }
-
-/* separate mantissa from exponent */
-x = frexpf( x, &e );
-
-
-/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
-
-if( x < SQRTH )
- {
- e -= 1;
- x = 2.0*x - 1.0;
- }
-else
- {
- x = x - 1.0;
- }
-
-z = x*x;
-y = x * ( z * polevlf( x, P, 8 ) );
-y = y - 0.5 * z; /* y - 0.5 * x**2 */
-
-
-/* Multiply log of fraction by log2(e)
- * and base 2 exponent by 1
- *
- * ***CAUTION***
- *
- * This sequence of operations is critical and it may
- * be horribly defeated by some compiler optimizers.
- */
-z = y * LOG2EA;
-z += x * LOG2EA;
-z += y;
-z += x;
-z += (float )e;
-return( z );
-}
diff --git a/libm/float/logf.c b/libm/float/logf.c
deleted file mode 100644
index 750138564..000000000
--- a/libm/float/logf.c
+++ /dev/null
@@ -1,128 +0,0 @@
-/* logf.c
- *
- * Natural logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, logf();
- *
- * y = logf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the logarithm
- * of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 100000 7.6e-8 2.7e-8
- * IEEE 1, MAXNUMF 100000 2.6e-8
- *
- * In the tests over the interval [1, MAXNUM], the logarithms
- * of the random arguments were uniformly distributed over
- * [0, MAXLOGF].
- *
- * ERROR MESSAGES:
- *
- * logf singularity: x = 0; returns MINLOG
- * logf domain: x < 0; returns MINLOG
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision natural logarithm
- * test interval: [sqrt(2)/2, sqrt(2)]
- * trials: 10000
- * peak relative error: 7.1e-8
- * rms relative error: 2.7e-8
- */
-
-#include <math.h>
-extern float MINLOGF, SQRTHF;
-
-
-float frexpf( float, int * );
-
-float logf( float xx )
-{
-register float y;
-float x, z, fe;
-int e;
-
-x = xx;
-fe = 0.0;
-/* Test for domain */
-if( x <= 0.0 )
- {
- if( x == 0.0 )
- mtherr( "logf", SING );
- else
- mtherr( "logf", DOMAIN );
- return( MINLOGF );
- }
-
-x = frexpf( x, &e );
-if( x < SQRTHF )
- {
- e -= 1;
- x = x + x - 1.0; /* 2x - 1 */
- }
-else
- {
- x = x - 1.0;
- }
-z = x * x;
-/* 3.4e-9 */
-/*
-p = logfcof;
-y = *p++ * x;
-for( i=0; i<8; i++ )
- {
- y += *p++;
- y *= x;
- }
-y *= z;
-*/
-
-y =
-(((((((( 7.0376836292E-2 * x
-- 1.1514610310E-1) * x
-+ 1.1676998740E-1) * x
-- 1.2420140846E-1) * x
-+ 1.4249322787E-1) * x
-- 1.6668057665E-1) * x
-+ 2.0000714765E-1) * x
-- 2.4999993993E-1) * x
-+ 3.3333331174E-1) * x * z;
-
-if( e )
- {
- fe = e;
- y += -2.12194440e-4 * fe;
- }
-
-y += -0.5 * z; /* y - 0.5 x^2 */
-z = x + y; /* ... + x */
-
-if( e )
- z += 0.693359375 * fe;
-
-return( z );
-}
diff --git a/libm/float/mtherr.c b/libm/float/mtherr.c
deleted file mode 100644
index d67dc042e..000000000
--- a/libm/float/mtherr.c
+++ /dev/null
@@ -1,99 +0,0 @@
-/* mtherr.c
- *
- * Library common error handling routine
- *
- *
- *
- * SYNOPSIS:
- *
- * char *fctnam;
- * int code;
- * void mtherr();
- *
- * mtherr( fctnam, code );
- *
- *
- *
- * DESCRIPTION:
- *
- * This routine may be called to report one of the following
- * error conditions (in the include file math.h).
- *
- * Mnemonic Value Significance
- *
- * DOMAIN 1 argument domain error
- * SING 2 function singularity
- * OVERFLOW 3 overflow range error
- * UNDERFLOW 4 underflow range error
- * TLOSS 5 total loss of precision
- * PLOSS 6 partial loss of precision
- * EDOM 33 Unix domain error code
- * ERANGE 34 Unix range error code
- *
- * The default version of the file prints the function name,
- * passed to it by the pointer fctnam, followed by the
- * error condition. The display is directed to the standard
- * output device. The routine then returns to the calling
- * program. Users may wish to modify the program to abort by
- * calling exit() under severe error conditions such as domain
- * errors.
- *
- * Since all error conditions pass control to this function,
- * the display may be easily changed, eliminated, or directed
- * to an error logging device.
- *
- * SEE ALSO:
- *
- * math.h
- *
- */
-
-/*
-Cephes Math Library Release 2.0: April, 1987
-Copyright 1984, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* Notice: the order of appearance of the following
- * messages is bound to the error codes defined
- * in math.h.
- */
-static char *ermsg[7] = {
-"unknown", /* error code 0 */
-"domain", /* error code 1 */
-"singularity", /* et seq. */
-"overflow",
-"underflow",
-"total loss of precision",
-"partial loss of precision"
-};
-
-
-void printf();
-
-int mtherr( name, code )
-char *name;
-int code;
-{
-
-/* Display string passed by calling program,
- * which is supposed to be the name of the
- * function in which the error occurred:
- */
-printf( "\n%s ", name );
- /* exit(2); */
-
-/* Display error message defined
- * by the code argument.
- */
-if( (code <= 0) || (code >= 6) )
- code = 0;
-printf( "%s error\n", ermsg[code] );
-
-/* Return to calling
- * program
- */
-return 0;
-}
diff --git a/libm/float/nantst.c b/libm/float/nantst.c
deleted file mode 100644
index 7edd992ae..000000000
--- a/libm/float/nantst.c
+++ /dev/null
@@ -1,54 +0,0 @@
-float inf = 1.0f/0.0f;
-float nnn = 1.0f/0.0f - 1.0f/0.0f;
-float fin = 1.0f;
-float neg = -1.0f;
-float nn2;
-
-int isnanf(), isfinitef(), signbitf();
-
-void pvalue (char *str, float x)
-{
-union
- {
- float f;
- unsigned int i;
- }u;
-
-printf("%s ", str);
-u.f = x;
-printf("%08x\n", u.i);
-}
-
-
-int
-main()
-{
-
-if (!isnanf(nnn))
- abort();
-pvalue("nnn", nnn);
-pvalue("inf", inf);
-nn2 = inf - inf;
-pvalue("inf - inf", nn2);
-if (isnanf(fin))
- abort();
-if (isnanf(inf))
- abort();
-if (!isfinitef(fin))
- abort();
-if (isfinitef(nnn))
- abort();
-if (isfinitef(inf))
- abort();
-if (!signbitf(neg))
- abort();
-if (signbitf(fin))
- abort();
-if (signbitf(inf))
- abort();
-/*
-if (signbitf(nnn))
- abort();
- */
-exit (0);
-}
diff --git a/libm/float/nbdtrf.c b/libm/float/nbdtrf.c
deleted file mode 100644
index e9b02753b..000000000
--- a/libm/float/nbdtrf.c
+++ /dev/null
@@ -1,141 +0,0 @@
-/* nbdtrf.c
- *
- * Negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, nbdtrf();
- *
- * y = nbdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the negative
- * binomial distribution:
- *
- * k
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * In a sequence of Bernoulli trials, this is the probability
- * that k or fewer failures precede the nth success.
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.5e-4 1.9e-5
- *
- */
- /* nbdtrcf.c
- *
- * Complemented negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, nbdtrcf();
- *
- * y = nbdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 to infinity of the negative
- * binomial distribution:
- *
- * inf
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.4e-4 2.0e-5
- *
- */
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-#ifdef ANSIC
-float incbetf(float, float, float);
-#else
-float incbetf();
-#endif
-
-
-float nbdtrcf( int k, int n, float pp )
-{
-float dk, dn, p;
-
-p = pp;
-if( (p < 0.0) || (p > 1.0) )
- goto domerr;
-if( k < 0 )
- {
-domerr:
- mtherr( "nbdtrf", DOMAIN );
- return( 0.0 );
- }
-
-dk = k+1;
-dn = n;
-return( incbetf( dk, dn, 1.0 - p ) );
-}
-
-
-
-float nbdtrf( int k, int n, float pp )
-{
-float dk, dn, p;
-
-p = pp;
-if( (p < 0.0) || (p > 1.0) )
- goto domerr;
-if( k < 0 )
- {
-domerr:
- mtherr( "nbdtrf", DOMAIN );
- return( 0.0 );
- }
-dk = k+1;
-dn = n;
-return( incbetf( dn, dk, p ) );
-}
diff --git a/libm/float/ndtrf.c b/libm/float/ndtrf.c
deleted file mode 100644
index c08d69eca..000000000
--- a/libm/float/ndtrf.c
+++ /dev/null
@@ -1,281 +0,0 @@
-/* ndtrf.c
- *
- * Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, ndtrf();
- *
- * y = ndtrf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the Gaussian probability density
- * function, integrated from minus infinity to x:
- *
- * x
- * -
- * 1 | | 2
- * ndtr(x) = --------- | exp( - t /2 ) dt
- * sqrt(2pi) | |
- * -
- * -inf.
- *
- * = ( 1 + erf(z) ) / 2
- * = erfc(z) / 2
- *
- * where z = x/sqrt(2). Computation is via the functions
- * erf and erfc.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -13,0 50000 1.5e-5 2.6e-6
- *
- *
- * ERROR MESSAGES:
- *
- * See erfcf().
- *
- */
- /* erff.c
- *
- * Error function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, erff();
- *
- * y = erff( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The integral is
- *
- * x
- * -
- * 2 | | 2
- * erf(x) = -------- | exp( - t ) dt.
- * sqrt(pi) | |
- * -
- * 0
- *
- * The magnitude of x is limited to 9.231948545 for DEC
- * arithmetic; 1 or -1 is returned outside this range.
- *
- * For 0 <= |x| < 1, erf(x) = x * P(x**2); otherwise
- * erf(x) = 1 - erfc(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -9.3,9.3 50000 1.7e-7 2.8e-8
- *
- */
- /* erfcf.c
- *
- * Complementary error function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, erfcf();
- *
- * y = erfcf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * 1 - erf(x) =
- *
- * inf.
- * -
- * 2 | | 2
- * erfc(x) = -------- | exp( - t ) dt
- * sqrt(pi) | |
- * -
- * x
- *
- *
- * For small x, erfc(x) = 1 - erf(x); otherwise polynomial
- * approximations 1/x P(1/x**2) are computed.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -9.3,9.3 50000 3.9e-6 7.2e-7
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * erfcf underflow x**2 > MAXLOGF 0.0
- *
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-extern float MAXLOGF, SQRTHF;
-
-
-/* erfc(x) = exp(-x^2) P(1/x), 1 < x < 2 */
-static float P[] = {
- 2.326819970068386E-002,
--1.387039388740657E-001,
- 3.687424674597105E-001,
--5.824733027278666E-001,
- 6.210004621745983E-001,
--4.944515323274145E-001,
- 3.404879937665872E-001,
--2.741127028184656E-001,
- 5.638259427386472E-001
-};
-
-/* erfc(x) = exp(-x^2) 1/x P(1/x^2), 2 < x < 14 */
-static float R[] = {
--1.047766399936249E+001,
- 1.297719955372516E+001,
--7.495518717768503E+000,
- 2.921019019210786E+000,
--1.015265279202700E+000,
- 4.218463358204948E-001,
--2.820767439740514E-001,
- 5.641895067754075E-001
-};
-
-/* erf(x) = x P(x^2), 0 < x < 1 */
-static float T[] = {
- 7.853861353153693E-005,
--8.010193625184903E-004,
- 5.188327685732524E-003,
--2.685381193529856E-002,
- 1.128358514861418E-001,
--3.761262582423300E-001,
- 1.128379165726710E+000
-};
-
-/*#define UTHRESH 37.519379347*/
-
-#define UTHRESH 14.0
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float polevlf(float, float *, int);
-float expf(float), logf(float), erff(float), erfcf(float);
-#else
-float polevlf(), expf(), logf(), erff(), erfcf();
-#endif
-
-
-
-float ndtrf(float aa)
-{
-float x, y, z;
-
-x = aa;
-x *= SQRTHF;
-z = fabsf(x);
-
-if( z < SQRTHF )
- y = 0.5 + 0.5 * erff(x);
-else
- {
- y = 0.5 * erfcf(z);
-
- if( x > 0 )
- y = 1.0 - y;
- }
-
-return(y);
-}
-
-
-float erfcf(float aa)
-{
-float a, p,q,x,y,z;
-
-
-a = aa;
-x = fabsf(a);
-
-if( x < 1.0 )
- return( 1.0 - erff(a) );
-
-z = -a * a;
-
-if( z < -MAXLOGF )
- {
-under:
- mtherr( "erfcf", UNDERFLOW );
- if( a < 0 )
- return( 2.0 );
- else
- return( 0.0 );
- }
-
-z = expf(z);
-q = 1.0/x;
-y = q * q;
-if( x < 2.0 )
- {
- p = polevlf( y, P, 8 );
- }
-else
- {
- p = polevlf( y, R, 7 );
- }
-
-y = z * q * p;
-
-if( a < 0 )
- y = 2.0 - y;
-
-if( y == 0.0 )
- goto under;
-
-return(y);
-}
-
-
-float erff(float xx)
-{
-float x, y, z;
-
-x = xx;
-if( fabsf(x) > 1.0 )
- return( 1.0 - erfcf(x) );
-
-z = x * x;
-y = x * polevlf( z, T, 6 );
-return( y );
-
-}
diff --git a/libm/float/ndtrif.c b/libm/float/ndtrif.c
deleted file mode 100644
index 3e33bc2c5..000000000
--- a/libm/float/ndtrif.c
+++ /dev/null
@@ -1,186 +0,0 @@
-/* ndtrif.c
- *
- * Inverse of Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, ndtrif();
- *
- * x = ndtrif( y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the argument, x, for which the area under the
- * Gaussian probability density function (integrated from
- * minus infinity to x) is equal to y.
- *
- *
- * For small arguments 0 < y < exp(-2), the program computes
- * z = sqrt( -2.0 * log(y) ); then the approximation is
- * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
- * There are two rational functions P/Q, one for 0 < y < exp(-32)
- * and the other for y up to exp(-2). For larger arguments,
- * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1e-38, 1 30000 3.6e-7 5.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ndtrif domain x <= 0 -MAXNUM
- * ndtrif domain x >= 1 MAXNUM
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-extern float MAXNUMF;
-
-/* sqrt(2pi) */
-static float s2pi = 2.50662827463100050242;
-
-/* approximation for 0 <= |y - 0.5| <= 3/8 */
-static float P0[5] = {
--5.99633501014107895267E1,
- 9.80010754185999661536E1,
--5.66762857469070293439E1,
- 1.39312609387279679503E1,
--1.23916583867381258016E0,
-};
-static float Q0[8] = {
-/* 1.00000000000000000000E0,*/
- 1.95448858338141759834E0,
- 4.67627912898881538453E0,
- 8.63602421390890590575E1,
--2.25462687854119370527E2,
- 2.00260212380060660359E2,
--8.20372256168333339912E1,
- 1.59056225126211695515E1,
--1.18331621121330003142E0,
-};
-
-/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
- * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
- */
-static float P1[9] = {
- 4.05544892305962419923E0,
- 3.15251094599893866154E1,
- 5.71628192246421288162E1,
- 4.40805073893200834700E1,
- 1.46849561928858024014E1,
- 2.18663306850790267539E0,
--1.40256079171354495875E-1,
--3.50424626827848203418E-2,
--8.57456785154685413611E-4,
-};
-static float Q1[8] = {
-/* 1.00000000000000000000E0,*/
- 1.57799883256466749731E1,
- 4.53907635128879210584E1,
- 4.13172038254672030440E1,
- 1.50425385692907503408E1,
- 2.50464946208309415979E0,
--1.42182922854787788574E-1,
--3.80806407691578277194E-2,
--9.33259480895457427372E-4,
-};
-
-
-/* Approximation for interval z = sqrt(-2 log y ) between 8 and 64
- * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
- */
-
-static float P2[9] = {
- 3.23774891776946035970E0,
- 6.91522889068984211695E0,
- 3.93881025292474443415E0,
- 1.33303460815807542389E0,
- 2.01485389549179081538E-1,
- 1.23716634817820021358E-2,
- 3.01581553508235416007E-4,
- 2.65806974686737550832E-6,
- 6.23974539184983293730E-9,
-};
-static float Q2[8] = {
-/* 1.00000000000000000000E0,*/
- 6.02427039364742014255E0,
- 3.67983563856160859403E0,
- 1.37702099489081330271E0,
- 2.16236993594496635890E-1,
- 1.34204006088543189037E-2,
- 3.28014464682127739104E-4,
- 2.89247864745380683936E-6,
- 6.79019408009981274425E-9,
-};
-
-#ifdef ANSIC
-float polevlf(float, float *, int);
-float p1evlf(float, float *, int);
-float logf(float), sqrtf(float);
-#else
-float polevlf(), p1evlf(), logf(), sqrtf();
-#endif
-
-
-float ndtrif(float yy0)
-{
-float y0, x, y, z, y2, x0, x1;
-int code;
-
-y0 = yy0;
-if( y0 <= 0.0 )
- {
- mtherr( "ndtrif", DOMAIN );
- return( -MAXNUMF );
- }
-if( y0 >= 1.0 )
- {
- mtherr( "ndtrif", DOMAIN );
- return( MAXNUMF );
- }
-code = 1;
-y = y0;
-if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */
- {
- y = 1.0 - y;
- code = 0;
- }
-
-if( y > 0.13533528323661269189 )
- {
- y = y - 0.5;
- y2 = y * y;
- x = y + y * (y2 * polevlf( y2, P0, 4)/p1evlf( y2, Q0, 8 ));
- x = x * s2pi;
- return(x);
- }
-
-x = sqrtf( -2.0 * logf(y) );
-x0 = x - logf(x)/x;
-
-z = 1.0/x;
-if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */
- x1 = z * polevlf( z, P1, 8 )/p1evlf( z, Q1, 8 );
-else
- x1 = z * polevlf( z, P2, 8 )/p1evlf( z, Q2, 8 );
-x = x0 - x1;
-if( code != 0 )
- x = -x;
-return( x );
-}
diff --git a/libm/float/pdtrf.c b/libm/float/pdtrf.c
deleted file mode 100644
index 17a05ee13..000000000
--- a/libm/float/pdtrf.c
+++ /dev/null
@@ -1,188 +0,0 @@
-/* pdtrf.c
- *
- * Poisson distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k;
- * float m, y, pdtrf();
- *
- * y = pdtrf( k, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the first k terms of the Poisson
- * distribution:
- *
- * k j
- * -- -m m
- * > e --
- * -- j!
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * gamma integral is employed, according to the relation
- *
- * y = pdtr( k, m ) = igamc( k+1, m ).
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 6.9e-5 8.0e-6
- *
- */
- /* pdtrcf()
- *
- * Complemented poisson distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k;
- * float m, y, pdtrcf();
- *
- * y = pdtrcf( k, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 to infinity of the Poisson
- * distribution:
- *
- * inf. j
- * -- -m m
- * > e --
- * -- j!
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * gamma integral is employed, according to the formula
- *
- * y = pdtrc( k, m ) = igam( k+1, m ).
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 8.4e-5 1.2e-5
- *
- */
- /* pdtrif()
- *
- * Inverse Poisson distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k;
- * float m, y, pdtrf();
- *
- * m = pdtrif( k, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the Poisson variable x such that the integral
- * from 0 to x of the Poisson density is equal to the
- * given probability y.
- *
- * This is accomplished using the inverse gamma integral
- * function and the relation
- *
- * m = igami( k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 8.7e-6 1.4e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * pdtri domain y < 0 or y >= 1 0.0
- * k < 0
- *
- */
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-#ifdef ANSIC
-float igamf(float, float), igamcf(float, float), igamif(float, float);
-#else
-float igamf(), igamcf(), igamif();
-#endif
-
-
-float pdtrcf( int k, float mm )
-{
-float v, m;
-
-m = mm;
-if( (k < 0) || (m <= 0.0) )
- {
- mtherr( "pdtrcf", DOMAIN );
- return( 0.0 );
- }
-v = k+1;
-return( igamf( v, m ) );
-}
-
-
-
-float pdtrf( int k, float mm )
-{
-float v, m;
-
-m = mm;
-if( (k < 0) || (m <= 0.0) )
- {
- mtherr( "pdtr", DOMAIN );
- return( 0.0 );
- }
-v = k+1;
-return( igamcf( v, m ) );
-}
-
-
-float pdtrif( int k, float yy )
-{
-float v, y;
-
-y = yy;
-if( (k < 0) || (y < 0.0) || (y >= 1.0) )
- {
- mtherr( "pdtrif", DOMAIN );
- return( 0.0 );
- }
-v = k+1;
-v = igamif( v, y );
-return( v );
-}
diff --git a/libm/float/polevlf.c b/libm/float/polevlf.c
deleted file mode 100644
index 7d7b4d0b7..000000000
--- a/libm/float/polevlf.c
+++ /dev/null
@@ -1,99 +0,0 @@
-/* polevlf.c
- * p1evlf.c
- *
- * Evaluate polynomial
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * float x, y, coef[N+1], polevlf[];
- *
- * y = polevlf( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- *
- * The function p1evl() assumes that coef[N] = 1.0 and is
- * omitted from the array. Its calling arguments are
- * otherwise the same as polevl().
- *
- *
- * SPEED:
- *
- * In the interest of speed, there are no checks for out
- * of bounds arithmetic. This routine is used by most of
- * the functions in the library. Depending on available
- * equipment features, the user may wish to rewrite the
- * program in microcode or assembly language.
- *
- */
-
-
-/*
-Cephes Math Library Release 2.1: December, 1988
-Copyright 1984, 1987, 1988 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-float polevlf( float xx, float *coef, int N )
-{
-float ans, x;
-float *p;
-int i;
-
-x = xx;
-p = coef;
-ans = *p++;
-
-/*
-for( i=0; i<N; i++ )
- ans = ans * x + *p++;
-*/
-
-i = N;
-do
- ans = ans * x + *p++;
-while( --i );
-
-return( ans );
-}
-
-/* p1evl() */
-/* N
- * Evaluate polynomial when coefficient of x is 1.0.
- * Otherwise same as polevl.
- */
-
-float p1evlf( float xx, float *coef, int N )
-{
-float ans, x;
-float *p;
-int i;
-
-x = xx;
-p = coef;
-ans = x + *p++;
-i = N-1;
-
-do
- ans = ans * x + *p++;
-while( --i );
-
-return( ans );
-}
diff --git a/libm/float/polynf.c b/libm/float/polynf.c
deleted file mode 100644
index 48c6675d4..000000000
--- a/libm/float/polynf.c
+++ /dev/null
@@ -1,520 +0,0 @@
-/* polynf.c
- * polyrf.c
- * Arithmetic operations on polynomials
- *
- * In the following descriptions a, b, c are polynomials of degree
- * na, nb, nc respectively. The degree of a polynomial cannot
- * exceed a run-time value MAXPOLF. An operation that attempts
- * to use or generate a polynomial of higher degree may produce a
- * result that suffers truncation at degree MAXPOL. The value of
- * MAXPOL is set by calling the function
- *
- * polinif( maxpol );
- *
- * where maxpol is the desired maximum degree. This must be
- * done prior to calling any of the other functions in this module.
- * Memory for internal temporary polynomial storage is allocated
- * by polinif().
- *
- * Each polynomial is represented by an array containing its
- * coefficients, together with a separately declared integer equal
- * to the degree of the polynomial. The coefficients appear in
- * ascending order; that is,
- *
- * 2 na
- * a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .
- *
- *
- *
- * sum = poleva( a, na, x ); Evaluate polynomial a(t) at t = x.
- * polprtf( a, na, D ); Print the coefficients of a to D digits.
- * polclrf( a, na ); Set a identically equal to zero, up to a[na].
- * polmovf( a, na, b ); Set b = a.
- * poladdf( a, na, b, nb, c ); c = b + a, nc = max(na,nb)
- * polsubf( a, na, b, nb, c ); c = b - a, nc = max(na,nb)
- * polmulf( a, na, b, nb, c ); c = b * a, nc = na+nb
- *
- *
- * Division:
- *
- * i = poldivf( a, na, b, nb, c ); c = b / a, nc = MAXPOL
- *
- * returns i = the degree of the first nonzero coefficient of a.
- * The computed quotient c must be divided by x^i. An error message
- * is printed if a is identically zero.
- *
- *
- * Change of variables:
- * If a and b are polynomials, and t = a(x), then
- * c(t) = b(a(x))
- * is a polynomial found by substituting a(x) for t. The
- * subroutine call for this is
- *
- * polsbtf( a, na, b, nb, c );
- *
- *
- * Notes:
- * poldivf() is an integer routine; polevaf() is float.
- * Any of the arguments a, b, c may refer to the same array.
- *
- */
-
-#ifndef NULL
-#define NULL 0
-#endif
-#include <math.h>
-
-#ifdef ANSIC
-void printf(), sprintf(), exit();
-void free(void *);
-void *malloc(int);
-#else
-void printf(), sprintf(), free(), exit();
-void *malloc();
-#endif
-/* near pointer version of malloc() */
-/*#define malloc _nmalloc*/
-/*#define free _nfree*/
-
-/* Pointers to internal arrays. Note poldiv() allocates
- * and deallocates some temporary arrays every time it is called.
- */
-static float *pt1 = 0;
-static float *pt2 = 0;
-static float *pt3 = 0;
-
-/* Maximum degree of polynomial. */
-int MAXPOLF = 0;
-extern int MAXPOLF;
-
-/* Number of bytes (chars) in maximum size polynomial. */
-static int psize = 0;
-
-
-/* Initialize max degree of polynomials
- * and allocate temporary storage.
- */
-#ifdef ANSIC
-void polinif( int maxdeg )
-#else
-int polinif( maxdeg )
-int maxdeg;
-#endif
-{
-
-MAXPOLF = maxdeg;
-psize = (maxdeg + 1) * sizeof(float);
-
-/* Release previously allocated memory, if any. */
-if( pt3 )
- free(pt3);
-if( pt2 )
- free(pt2);
-if( pt1 )
- free(pt1);
-
-/* Allocate new arrays */
-pt1 = (float * )malloc(psize); /* used by polsbtf */
-pt2 = (float * )malloc(psize); /* used by polsbtf */
-pt3 = (float * )malloc(psize); /* used by polmul */
-
-/* Report if failure */
-if( (pt1 == NULL) || (pt2 == NULL) || (pt3 == NULL) )
- {
- mtherr( "polinif", ERANGE );
- exit(1);
- }
-#if !ANSIC
-return 0;
-#endif
-}
-
-
-
-/* Print the coefficients of a, with d decimal precision.
- */
-static char *form = "abcdefghijk";
-
-#ifdef ANSIC
-void polprtf( float *a, int na, int d )
-#else
-int polprtf( a, na, d )
-float a[];
-int na, d;
-#endif
-{
-int i, j, d1;
-char *p;
-
-/* Create format descriptor string for the printout.
- * Do this partly by hand, since sprintf() may be too
- * bug-ridden to accomplish this feat by itself.
- */
-p = form;
-*p++ = '%';
-d1 = d + 8;
-(void )sprintf( p, "%d ", d1 );
-p += 1;
-if( d1 >= 10 )
- p += 1;
-*p++ = '.';
-(void )sprintf( p, "%d ", d );
-p += 1;
-if( d >= 10 )
- p += 1;
-*p++ = 'e';
-*p++ = ' ';
-*p++ = '\0';
-
-
-/* Now do the printing.
- */
-d1 += 1;
-j = 0;
-for( i=0; i<=na; i++ )
- {
-/* Detect end of available line */
- j += d1;
- if( j >= 78 )
- {
- printf( "\n" );
- j = d1;
- }
- printf( form, a[i] );
- }
-printf( "\n" );
-#if !ANSIC
-return 0;
-#endif
-}
-
-
-
-/* Set a = 0.
- */
-#ifdef ANSIC
-void polclrf( register float *a, int n )
-#else
-int polclrf( a, n )
-register float *a;
-int n;
-#endif
-{
-int i;
-
-if( n > MAXPOLF )
- n = MAXPOLF;
-for( i=0; i<=n; i++ )
- *a++ = 0.0;
-#if !ANSIC
-return 0;
-#endif
-}
-
-
-
-/* Set b = a.
- */
-#ifdef ANSIC
-void polmovf( register float *a, int na, register float *b )
-#else
-int polmovf( a, na, b )
-register float *a, *b;
-int na;
-#endif
-{
-int i;
-
-if( na > MAXPOLF )
- na = MAXPOLF;
-
-for( i=0; i<= na; i++ )
- {
- *b++ = *a++;
- }
-#if !ANSIC
-return 0;
-#endif
-}
-
-
-/* c = b * a.
- */
-#ifdef ANSIC
-void polmulf( float a[], int na, float b[], int nb, float c[] )
-#else
-int polmulf( a, na, b, nb, c )
-float a[], b[], c[];
-int na, nb;
-#endif
-{
-int i, j, k, nc;
-float x;
-
-nc = na + nb;
-polclrf( pt3, MAXPOLF );
-
-for( i=0; i<=na; i++ )
- {
- x = a[i];
- for( j=0; j<=nb; j++ )
- {
- k = i + j;
- if( k > MAXPOLF )
- break;
- pt3[k] += x * b[j];
- }
- }
-
-if( nc > MAXPOLF )
- nc = MAXPOLF;
-for( i=0; i<=nc; i++ )
- c[i] = pt3[i];
-#if !ANSIC
-return 0;
-#endif
-}
-
-
-
-
-/* c = b + a.
- */
-#ifdef ANSIC
-void poladdf( float a[], int na, float b[], int nb, float c[] )
-#else
-int poladdf( a, na, b, nb, c )
-float a[], b[], c[];
-int na, nb;
-#endif
-{
-int i, n;
-
-
-if( na > nb )
- n = na;
-else
- n = nb;
-
-if( n > MAXPOLF )
- n = MAXPOLF;
-
-for( i=0; i<=n; i++ )
- {
- if( i > na )
- c[i] = b[i];
- else if( i > nb )
- c[i] = a[i];
- else
- c[i] = b[i] + a[i];
- }
-#if !ANSIC
-return 0;
-#endif
-}
-
-/* c = b - a.
- */
-#ifdef ANSIC
-void polsubf( float a[], int na, float b[], int nb, float c[] )
-#else
-int polsubf( a, na, b, nb, c )
-float a[], b[], c[];
-int na, nb;
-#endif
-{
-int i, n;
-
-
-if( na > nb )
- n = na;
-else
- n = nb;
-
-if( n > MAXPOLF )
- n = MAXPOLF;
-
-for( i=0; i<=n; i++ )
- {
- if( i > na )
- c[i] = b[i];
- else if( i > nb )
- c[i] = -a[i];
- else
- c[i] = b[i] - a[i];
- }
-#if !ANSIC
-return 0;
-#endif
-}
-
-
-
-/* c = b/a
- */
-#ifdef ANSIC
-int poldivf( float a[], int na, float b[], int nb, float c[] )
-#else
-int poldivf( a, na, b, nb, c )
-float a[], b[], c[];
-int na, nb;
-#endif
-{
-float quot;
-float *ta, *tb, *tq;
-int i, j, k, sing;
-
-sing = 0;
-
-/* Allocate temporary arrays. This would be quicker
- * if done automatically on the stack, but stack space
- * may be hard to obtain on a small computer.
- */
-ta = (float * )malloc( psize );
-polclrf( ta, MAXPOLF );
-polmovf( a, na, ta );
-
-tb = (float * )malloc( psize );
-polclrf( tb, MAXPOLF );
-polmovf( b, nb, tb );
-
-tq = (float * )malloc( psize );
-polclrf( tq, MAXPOLF );
-
-/* What to do if leading (constant) coefficient
- * of denominator is zero.
- */
-if( a[0] == 0.0 )
- {
- for( i=0; i<=na; i++ )
- {
- if( ta[i] != 0.0 )
- goto nzero;
- }
- mtherr( "poldivf", SING );
- goto done;
-
-nzero:
-/* Reduce the degree of the denominator. */
- for( i=0; i<na; i++ )
- ta[i] = ta[i+1];
- ta[na] = 0.0;
-
- if( b[0] != 0.0 )
- {
-/* Optional message:
- printf( "poldivf singularity, divide quotient by x\n" );
-*/
- sing += 1;
- }
- else
- {
-/* Reduce degree of numerator. */
- for( i=0; i<nb; i++ )
- tb[i] = tb[i+1];
- tb[nb] = 0.0;
- }
-/* Call self, using reduced polynomials. */
- sing += poldivf( ta, na, tb, nb, c );
- goto done;
- }
-
-/* Long division algorithm. ta[0] is nonzero.
- */
-for( i=0; i<=MAXPOLF; i++ )
- {
- quot = tb[i]/ta[0];
- for( j=0; j<=MAXPOLF; j++ )
- {
- k = j + i;
- if( k > MAXPOLF )
- break;
- tb[k] -= quot * ta[j];
- }
- tq[i] = quot;
- }
-/* Send quotient to output array. */
-polmovf( tq, MAXPOLF, c );
-
-done:
-
-/* Restore allocated memory. */
-free(tq);
-free(tb);
-free(ta);
-return( sing );
-}
-
-
-
-
-/* Change of variables
- * Substitute a(y) for the variable x in b(x).
- * x = a(y)
- * c(x) = b(x) = b(a(y)).
- */
-
-#ifdef ANSIC
-void polsbtf( float a[], int na, float b[], int nb, float c[] )
-#else
-int polsbtf( a, na, b, nb, c )
-float a[], b[], c[];
-int na, nb;
-#endif
-{
-int i, j, k, n2;
-float x;
-
-/* 0th degree term:
- */
-polclrf( pt1, MAXPOLF );
-pt1[0] = b[0];
-
-polclrf( pt2, MAXPOLF );
-pt2[0] = 1.0;
-n2 = 0;
-
-for( i=1; i<=nb; i++ )
- {
-/* Form ith power of a. */
- polmulf( a, na, pt2, n2, pt2 );
- n2 += na;
- x = b[i];
-/* Add the ith coefficient of b times the ith power of a. */
- for( j=0; j<=n2; j++ )
- {
- if( j > MAXPOLF )
- break;
- pt1[j] += x * pt2[j];
- }
- }
-
-k = n2 + nb;
-if( k > MAXPOLF )
- k = MAXPOLF;
-for( i=0; i<=k; i++ )
- c[i] = pt1[i];
-#if !ANSIC
-return 0;
-#endif
-}
-
-
-
-
-/* Evaluate polynomial a(t) at t = x.
- */
-float polevaf( float *a, int na, float xx )
-{
-float x, s;
-int i;
-
-x = xx;
-s = a[na];
-for( i=na-1; i>=0; i-- )
- {
- s = s * x + a[i];
- }
-return(s);
-}
-
diff --git a/libm/float/powf.c b/libm/float/powf.c
deleted file mode 100644
index 367a39ad4..000000000
--- a/libm/float/powf.c
+++ /dev/null
@@ -1,338 +0,0 @@
-/* powf.c
- *
- * Power function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, z, powf();
- *
- * z = powf( x, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes x raised to the yth power. Analytically,
- *
- * x**y = exp( y log(x) ).
- *
- * Following Cody and Waite, this program uses a lookup table
- * of 2**-i/16 and pseudo extended precision arithmetic to
- * obtain an extra three bits of accuracy in both the logarithm
- * and the exponential.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,10 100,000 1.4e-7 3.6e-8
- * 1/10 < x < 10, x uniformly distributed.
- * -10 < y < 10, y uniformly distributed.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * powf overflow x**y > MAXNUMF MAXNUMF
- * powf underflow x**y < 1/MAXNUMF 0.0
- * powf domain x<0 and y noninteger 0.0
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-static char fname[] = {"powf"};
-
-
-/* 2^(-i/16)
- * The decimal values are rounded to 24-bit precision
- */
-static float A[] = {
- 1.00000000000000000000E0,
- 9.57603275775909423828125E-1,
- 9.17004048824310302734375E-1,
- 8.78126084804534912109375E-1,
- 8.40896427631378173828125E-1,
- 8.05245161056518554687500E-1,
- 7.71105408668518066406250E-1,
- 7.38413095474243164062500E-1,
- 7.07106769084930419921875E-1,
- 6.77127778530120849609375E-1,
- 6.48419797420501708984375E-1,
- 6.20928883552551269531250E-1,
- 5.94603538513183593750000E-1,
- 5.69394290447235107421875E-1,
- 5.45253872871398925781250E-1,
- 5.22136867046356201171875E-1,
- 5.00000000000000000000E-1
-};
-/* continuation, for even i only
- * 2^(i/16) = A[i] + B[i/2]
- */
-static float B[] = {
- 0.00000000000000000000E0,
--5.61963907099083340520586E-9,
--1.23776636307969995237668E-8,
- 4.03545234539989593104537E-9,
- 1.21016171044789693621048E-8,
--2.00949968760174979411038E-8,
- 1.89881769396087499852802E-8,
--6.53877009617774467211965E-9,
- 0.00000000000000000000E0
-};
-
-/* 1 / A[i]
- * The decimal values are full precision
- */
-static float Ainv[] = {
- 1.00000000000000000000000E0,
- 1.04427378242741384032197E0,
- 1.09050773266525765920701E0,
- 1.13878863475669165370383E0,
- 1.18920711500272106671750E0,
- 1.24185781207348404859368E0,
- 1.29683955465100966593375E0,
- 1.35425554693689272829801E0,
- 1.41421356237309504880169E0,
- 1.47682614593949931138691E0,
- 1.54221082540794082361229E0,
- 1.61049033194925430817952E0,
- 1.68179283050742908606225E0,
- 1.75625216037329948311216E0,
- 1.83400808640934246348708E0,
- 1.91520656139714729387261E0,
- 2.00000000000000000000000E0
-};
-
-#ifdef DEC
-#define MEXP 2032.0
-#define MNEXP -2032.0
-#else
-#define MEXP 2048.0
-#define MNEXP -2400.0
-#endif
-
-/* log2(e) - 1 */
-#define LOG2EA 0.44269504088896340736F
-extern float MAXNUMF;
-
-#define F W
-#define Fa Wa
-#define Fb Wb
-#define G W
-#define Ga Wa
-#define Gb u
-#define H W
-#define Ha Wb
-#define Hb Wb
-
-
-#ifdef ANSIC
-float floorf( float );
-float frexpf( float, int *);
-float ldexpf( float, int );
-float powif( float, int );
-#else
-float floorf(), frexpf(), ldexpf(), powif();
-#endif
-
-/* Find a multiple of 1/16 that is within 1/16 of x. */
-#define reduc(x) 0.0625 * floorf( 16 * (x) )
-
-#ifdef ANSIC
-float powf( float x, float y )
-#else
-float powf( x, y )
-float x, y;
-#endif
-{
-float u, w, z, W, Wa, Wb, ya, yb;
-/* float F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
-int e, i, nflg;
-
-
-nflg = 0; /* flag = 1 if x<0 raised to integer power */
-w = floorf(y);
-if( w < 0 )
- z = -w;
-else
- z = w;
-if( (w == y) && (z < 32768.0) )
- {
- i = w;
- w = powif( x, i );
- return( w );
- }
-
-
-if( x <= 0.0F )
- {
- if( x == 0.0 )
- {
- if( y == 0.0 )
- return( 1.0 ); /* 0**0 */
- else
- return( 0.0 ); /* 0**y */
- }
- else
- {
- if( w != y )
- { /* noninteger power of negative number */
- mtherr( fname, DOMAIN );
- return(0.0);
- }
- nflg = 1;
- if( x < 0 )
- x = -x;
- }
- }
-
-/* separate significand from exponent */
-x = frexpf( x, &e );
-
-/* find significand in antilog table A[] */
-i = 1;
-if( x <= A[9] )
- i = 9;
-if( x <= A[i+4] )
- i += 4;
-if( x <= A[i+2] )
- i += 2;
-if( x >= A[1] )
- i = -1;
-i += 1;
-
-
-/* Find (x - A[i])/A[i]
- * in order to compute log(x/A[i]):
- *
- * log(x) = log( a x/a ) = log(a) + log(x/a)
- *
- * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
- */
-x -= A[i];
-x -= B[ i >> 1 ];
-x *= Ainv[i];
-
-
-/* rational approximation for log(1+v):
- *
- * log(1+v) = v - 0.5 v^2 + v^3 P(v)
- * Theoretical relative error of the approximation is 3.5e-11
- * on the interval 2^(1/16) - 1 > v > 2^(-1/16) - 1
- */
-z = x*x;
-w = (((-0.1663883081054895 * x
- + 0.2003770364206271) * x
- - 0.2500006373383951) * x
- + 0.3333331095506474) * x * z;
-w -= 0.5 * z;
-
-/* Convert to base 2 logarithm:
- * multiply by log2(e)
- */
-w = w + LOG2EA * w;
-/* Note x was not yet added in
- * to above rational approximation,
- * so do it now, while multiplying
- * by log2(e).
- */
-z = w + LOG2EA * x;
-z = z + x;
-
-/* Compute exponent term of the base 2 logarithm. */
-w = -i;
-w *= 0.0625; /* divide by 16 */
-w += e;
-/* Now base 2 log of x is w + z. */
-
-/* Multiply base 2 log by y, in extended precision. */
-
-/* separate y into large part ya
- * and small part yb less than 1/16
- */
-ya = reduc(y);
-yb = y - ya;
-
-
-F = z * y + w * yb;
-Fa = reduc(F);
-Fb = F - Fa;
-
-G = Fa + w * ya;
-Ga = reduc(G);
-Gb = G - Ga;
-
-H = Fb + Gb;
-Ha = reduc(H);
-w = 16 * (Ga + Ha);
-
-/* Test the power of 2 for overflow */
-if( w > MEXP )
- {
- mtherr( fname, OVERFLOW );
- return( MAXNUMF );
- }
-
-if( w < MNEXP )
- {
- mtherr( fname, UNDERFLOW );
- return( 0.0 );
- }
-
-e = w;
-Hb = H - Ha;
-
-if( Hb > 0.0 )
- {
- e += 1;
- Hb -= 0.0625;
- }
-
-/* Now the product y * log2(x) = Hb + e/16.0.
- *
- * Compute base 2 exponential of Hb,
- * where -0.0625 <= Hb <= 0.
- * Theoretical relative error of the approximation is 2.8e-12.
- */
-/* z = 2**Hb - 1 */
-z = ((( 9.416993633606397E-003 * Hb
- + 5.549356188719141E-002) * Hb
- + 2.402262883964191E-001) * Hb
- + 6.931471791490764E-001) * Hb;
-
-/* Express e/16 as an integer plus a negative number of 16ths.
- * Find lookup table entry for the fractional power of 2.
- */
-if( e < 0 )
- i = -( -e >> 4 );
-else
- i = (e >> 4) + 1;
-e = (i << 4) - e;
-w = A[e];
-z = w + w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
-z = ldexpf( z, i ); /* multiply by integer power of 2 */
-
-if( nflg )
- {
-/* For negative x,
- * find out if the integer exponent
- * is odd or even.
- */
- w = 2 * floorf( (float) 0.5 * w );
- if( w != y )
- z = -z; /* odd exponent */
- }
-
-return( z );
-}
diff --git a/libm/float/powif.c b/libm/float/powif.c
deleted file mode 100644
index d226896ba..000000000
--- a/libm/float/powif.c
+++ /dev/null
@@ -1,156 +0,0 @@
-/* powif.c
- *
- * Real raised to integer power
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, powif();
- * int n;
- *
- * y = powif( x, n );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns argument x raised to the nth power.
- * The routine efficiently decomposes n as a sum of powers of
- * two. The desired power is a product of two-to-the-kth
- * powers of x. Thus to compute the 32767 power of x requires
- * 28 multiplications instead of 32767 multiplications.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Relative error:
- * arithmetic x domain n domain # trials peak rms
- * IEEE .04,26 -26,26 100000 1.1e-6 2.0e-7
- * IEEE 1,2 -128,128 100000 1.1e-5 1.0e-6
- *
- * Returns MAXNUMF on overflow, zero on underflow.
- *
- */
-
-/* powi.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-extern float MAXNUMF, MAXLOGF, MINLOGF, LOGE2F;
-
-float frexpf( float, int * );
-
-float powif( float x, int nn )
-{
-int n, e, sign, asign, lx;
-float w, y, s;
-
-if( x == 0.0 )
- {
- if( nn == 0 )
- return( 1.0 );
- else if( nn < 0 )
- return( MAXNUMF );
- else
- return( 0.0 );
- }
-
-if( nn == 0 )
- return( 1.0 );
-
-
-if( x < 0.0 )
- {
- asign = -1;
- x = -x;
- }
-else
- asign = 0;
-
-
-if( nn < 0 )
- {
- sign = -1;
- n = -nn;
-/*
- x = 1.0/x;
-*/
- }
-else
- {
- sign = 0;
- n = nn;
- }
-
-/* Overflow detection */
-
-/* Calculate approximate logarithm of answer */
-s = frexpf( x, &lx );
-e = (lx - 1)*n;
-if( (e == 0) || (e > 64) || (e < -64) )
- {
- s = (s - 7.0710678118654752e-1) / (s + 7.0710678118654752e-1);
- s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2F;
- }
-else
- {
- s = LOGE2F * e;
- }
-
-if( s > MAXLOGF )
- {
- mtherr( "powi", OVERFLOW );
- y = MAXNUMF;
- goto done;
- }
-
-if( s < MINLOGF )
- return(0.0);
-
-/* Handle tiny denormal answer, but with less accuracy
- * since roundoff error in 1.0/x will be amplified.
- * The precise demarcation should be the gradual underflow threshold.
- */
-if( s < (-MAXLOGF+2.0) )
- {
- x = 1.0/x;
- sign = 0;
- }
-
-/* First bit of the power */
-if( n & 1 )
- y = x;
-
-else
- {
- y = 1.0;
- asign = 0;
- }
-
-w = x;
-n >>= 1;
-while( n )
- {
- w = w * w; /* arg to the 2-to-the-kth power */
- if( n & 1 ) /* if that bit is set, then include in product */
- y *= w;
- n >>= 1;
- }
-
-
-done:
-
-if( asign )
- y = -y; /* odd power of negative number */
-if( sign )
- y = 1.0/y;
-return(y);
-}
diff --git a/libm/float/powtst.c b/libm/float/powtst.c
deleted file mode 100644
index ff4845de2..000000000
--- a/libm/float/powtst.c
+++ /dev/null
@@ -1,41 +0,0 @@
-#include <stdio.h>
-#include <math.h>
-extern float MAXNUMF, MAXLOGF, MINLOGF;
-
-int
-main()
-{
-float exp1, minnum, x, y, z, e;
-exp1 = expf(1.0F);
-
-minnum = powif(2.0F,-149);
-
-x = exp1;
-y = MINLOGF + logf(0.501);
-/*y = MINLOGF - 0.405;*/
-z = powf(x,y);
-e = (z - minnum) / minnum;
-printf("%.16e %.16e\n", z, e);
-
-x = exp1;
-y = MAXLOGF;
-z = powf(x,y);
-e = (z - MAXNUMF) / MAXNUMF;
-printf("%.16e %.16e\n", z, e);
-
-x = MAXNUMF;
-y = 1.0F/MAXLOGF;
-z = powf(x,y);
-e = (z - exp1) / exp1;
-printf("%.16e %.16e\n", z, e);
-
-
-x = exp1;
-y = MINLOGF;
-z = powf(x,y);
-e = (z - minnum) / minnum;
-printf("%.16e %.16e\n", z, e);
-
-
-exit(0);
-}
diff --git a/libm/float/psif.c b/libm/float/psif.c
deleted file mode 100644
index 2d9187c67..000000000
--- a/libm/float/psif.c
+++ /dev/null
@@ -1,153 +0,0 @@
-/* psif.c
- *
- * Psi (digamma) function
- *
- *
- * SYNOPSIS:
- *
- * float x, y, psif();
- *
- * y = psif( x );
- *
- *
- * DESCRIPTION:
- *
- * d -
- * psi(x) = -- ln | (x)
- * dx
- *
- * is the logarithmic derivative of the gamma function.
- * For integer x,
- * n-1
- * -
- * psi(n) = -EUL + > 1/k.
- * -
- * k=1
- *
- * This formula is used for 0 < n <= 10. If x is negative, it
- * is transformed to a positive argument by the reflection
- * formula psi(1-x) = psi(x) + pi cot(pi x).
- * For general positive x, the argument is made greater than 10
- * using the recurrence psi(x+1) = psi(x) + 1/x.
- * Then the following asymptotic expansion is applied:
- *
- * inf. B
- * - 2k
- * psi(x) = log(x) - 1/2x - > -------
- * - 2k
- * k=1 2k x
- *
- * where the B2k are Bernoulli numbers.
- *
- * ACCURACY:
- * Absolute error, relative when |psi| > 1 :
- * arithmetic domain # trials peak rms
- * IEEE -33,0 30000 8.2e-7 1.2e-7
- * IEEE 0,33 100000 7.3e-7 7.7e-8
- *
- * ERROR MESSAGES:
- * message condition value returned
- * psi singularity x integer <=0 MAXNUMF
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-
-static float A[] = {
--4.16666666666666666667E-3,
- 3.96825396825396825397E-3,
--8.33333333333333333333E-3,
- 8.33333333333333333333E-2
-};
-
-
-#define EUL 0.57721566490153286061
-
-extern float PIF, MAXNUMF;
-
-
-
-float floorf(float), logf(float), tanf(float);
-float polevlf(float, float *, int);
-
-float psif(float xx)
-{
-float p, q, nz, x, s, w, y, z;
-int i, n, negative;
-
-
-x = xx;
-nz = 0.0;
-negative = 0;
-if( x <= 0.0 )
- {
- negative = 1;
- q = x;
- p = floorf(q);
- if( p == q )
- {
- mtherr( "psif", SING );
- return( MAXNUMF );
- }
- nz = q - p;
- if( nz != 0.5 )
- {
- if( nz > 0.5 )
- {
- p += 1.0;
- nz = q - p;
- }
- nz = PIF/tanf(PIF*nz);
- }
- else
- {
- nz = 0.0;
- }
- x = 1.0 - x;
- }
-
-/* check for positive integer up to 10 */
-if( (x <= 10.0) && (x == floorf(x)) )
- {
- y = 0.0;
- n = x;
- for( i=1; i<n; i++ )
- {
- w = i;
- y += 1.0/w;
- }
- y -= EUL;
- goto done;
- }
-
-s = x;
-w = 0.0;
-while( s < 10.0 )
- {
- w += 1.0/s;
- s += 1.0;
- }
-
-if( s < 1.0e8 )
- {
- z = 1.0/(s * s);
- y = z * polevlf( z, A, 3 );
- }
-else
- y = 0.0;
-
-y = logf(s) - (0.5/s) - y - w;
-
-done:
-if( negative )
- {
- y -= nz;
- }
-return(y);
-}
diff --git a/libm/float/rgammaf.c b/libm/float/rgammaf.c
deleted file mode 100644
index 5afa25e91..000000000
--- a/libm/float/rgammaf.c
+++ /dev/null
@@ -1,130 +0,0 @@
-/* rgammaf.c
- *
- * Reciprocal gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, rgammaf();
- *
- * y = rgammaf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns one divided by the gamma function of the argument.
- *
- * The function is approximated by a Chebyshev expansion in
- * the interval [0,1]. Range reduction is by recurrence
- * for arguments between -34.034 and +34.84425627277176174.
- * 1/MAXNUMF is returned for positive arguments outside this
- * range.
- *
- * The reciprocal gamma function has no singularities,
- * but overflow and underflow may occur for large arguments.
- * These conditions return either MAXNUMF or 1/MAXNUMF with
- * appropriate sign.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -34,+34 100000 8.9e-7 1.1e-7
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1985, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-/* Chebyshev coefficients for reciprocal gamma function
- * in interval 0 to 1. Function is 1/(x gamma(x)) - 1
- */
-
-static float R[] = {
- 1.08965386454418662084E-9,
--3.33964630686836942556E-8,
- 2.68975996440595483619E-7,
- 2.96001177518801696639E-6,
--8.04814124978471142852E-5,
- 4.16609138709688864714E-4,
- 5.06579864028608725080E-3,
--6.41925436109158228810E-2,
--4.98558728684003594785E-3,
- 1.27546015610523951063E-1
-};
-
-
-static char name[] = "rgammaf";
-
-extern float PIF, MAXLOGF, MAXNUMF;
-
-
-
-float chbevlf(float, float *, int);
-float expf(float), logf(float), sinf(float), lgamf(float);
-
-float rgammaf(float xx)
-{
-float x, w, y, z;
-int sign;
-
-x = xx;
-if( x > 34.84425627277176174)
- {
- mtherr( name, UNDERFLOW );
- return(1.0/MAXNUMF);
- }
-if( x < -34.034 )
- {
- w = -x;
- z = sinf( PIF*w );
- if( z == 0.0 )
- return(0.0);
- if( z < 0.0 )
- {
- sign = 1;
- z = -z;
- }
- else
- sign = -1;
-
- y = logf( w * z / PIF ) + lgamf(w);
- if( y < -MAXLOGF )
- {
- mtherr( name, UNDERFLOW );
- return( sign * 1.0 / MAXNUMF );
- }
- if( y > MAXLOGF )
- {
- mtherr( name, OVERFLOW );
- return( sign * MAXNUMF );
- }
- return( sign * expf(y));
- }
-z = 1.0;
-w = x;
-
-while( w > 1.0 ) /* Downward recurrence */
- {
- w -= 1.0;
- z *= w;
- }
-while( w < 0.0 ) /* Upward recurrence */
- {
- z /= w;
- w += 1.0;
- }
-if( w == 0.0 ) /* Nonpositive integer */
- return(0.0);
-if( w == 1.0 ) /* Other integer */
- return( 1.0/z );
-
-y = w * ( 1.0 + chbevlf( 4.0*w-2.0, R, 10 ) ) / z;
-return(y);
-}
diff --git a/libm/float/setprec.c b/libm/float/setprec.c
deleted file mode 100644
index a5222ae73..000000000
--- a/libm/float/setprec.c
+++ /dev/null
@@ -1,10 +0,0 @@
-/* Null stubs for coprocessor precision settings */
-
-int
-sprec() {return 0; }
-
-int
-dprec() {return 0; }
-
-int
-ldprec() {return 0; }
diff --git a/libm/float/shichif.c b/libm/float/shichif.c
deleted file mode 100644
index ae98021a9..000000000
--- a/libm/float/shichif.c
+++ /dev/null
@@ -1,212 +0,0 @@
-/* shichif.c
- *
- * Hyperbolic sine and cosine integrals
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, Chi, Shi;
- *
- * shichi( x, &Chi, &Shi );
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integrals
- *
- * x
- * -
- * | | cosh t - 1
- * Chi(x) = eul + ln x + | ----------- dt,
- * | | t
- * -
- * 0
- *
- * x
- * -
- * | | sinh t
- * Shi(x) = | ------ dt
- * | | t
- * -
- * 0
- *
- * where eul = 0.57721566490153286061 is Euler's constant.
- * The integrals are evaluated by power series for x < 8
- * and by Chebyshev expansions for x between 8 and 88.
- * For large x, both functions approach exp(x)/2x.
- * Arguments greater than 88 in magnitude return MAXNUM.
- *
- *
- * ACCURACY:
- *
- * Test interval 0 to 88.
- * Relative error:
- * arithmetic function # trials peak rms
- * IEEE Shi 20000 3.5e-7 7.0e-8
- * Absolute error, except relative when |Chi| > 1:
- * IEEE Chi 20000 3.8e-7 7.6e-8
- */
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-#include <math.h>
-
-/* x exp(-x) shi(x), inverted interval 8 to 18 */
-static float S1[] = {
--3.56699611114982536845E-8,
- 1.44818877384267342057E-7,
- 7.82018215184051295296E-7,
--5.39919118403805073710E-6,
--3.12458202168959833422E-5,
- 8.90136741950727517826E-5,
- 2.02558474743846862168E-3,
- 2.96064440855633256972E-2,
- 1.11847751047257036625E0
-};
-
-/* x exp(-x) shi(x), inverted interval 18 to 88 */
-static float S2[] = {
- 1.69050228879421288846E-8,
- 1.25391771228487041649E-7,
- 1.16229947068677338732E-6,
- 1.61038260117376323993E-5,
- 3.49810375601053973070E-4,
- 1.28478065259647610779E-2,
- 1.03665722588798326712E0
-};
-
-
-/* x exp(-x) chin(x), inverted interval 8 to 18 */
-static float C1[] = {
- 1.31458150989474594064E-8,
--4.75513930924765465590E-8,
--2.21775018801848880741E-7,
- 1.94635531373272490962E-6,
- 4.33505889257316408893E-6,
--6.13387001076494349496E-5,
--3.13085477492997465138E-4,
- 4.97164789823116062801E-4,
- 2.64347496031374526641E-2,
- 1.11446150876699213025E0
-};
-
-/* x exp(-x) chin(x), inverted interval 18 to 88 */
-static float C2[] = {
--3.00095178028681682282E-9,
- 7.79387474390914922337E-8,
- 1.06942765566401507066E-6,
- 1.59503164802313196374E-5,
- 3.49592575153777996871E-4,
- 1.28475387530065247392E-2,
- 1.03665693917934275131E0
-};
-
-
-
-/* Sine and cosine integrals */
-
-#define EUL 0.57721566490153286061
-extern float MACHEPF, MAXNUMF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float logf(float ), expf(float), chbevlf(float, float *, int);
-#else
-float logf(), expf(), chbevlf();
-#endif
-
-
-
-int shichif( float xx, float *si, float *ci )
-{
-float x, k, z, c, s, a;
-short sign;
-
-x = xx;
-if( x < 0.0 )
- {
- sign = -1;
- x = -x;
- }
-else
- sign = 0;
-
-
-if( x == 0.0 )
- {
- *si = 0.0;
- *ci = -MAXNUMF;
- return( 0 );
- }
-
-if( x >= 8.0 )
- goto chb;
-
-z = x * x;
-
-/* Direct power series expansion */
-
-a = 1.0;
-s = 1.0;
-c = 0.0;
-k = 2.0;
-
-do
- {
- a *= z/k;
- c += a/k;
- k += 1.0;
- a /= k;
- s += a/k;
- k += 1.0;
- }
-while( fabsf(a/s) > MACHEPF );
-
-s *= x;
-goto done;
-
-
-chb:
-
-if( x < 18.0 )
- {
- a = (576.0/x - 52.0)/10.0;
- k = expf(x) / x;
- s = k * chbevlf( a, S1, 9 );
- c = k * chbevlf( a, C1, 10 );
- goto done;
- }
-
-if( x <= 88.0 )
- {
- a = (6336.0/x - 212.0)/70.0;
- k = expf(x) / x;
- s = k * chbevlf( a, S2, 7 );
- c = k * chbevlf( a, C2, 7 );
- goto done;
- }
-else
- {
- if( sign )
- *si = -MAXNUMF;
- else
- *si = MAXNUMF;
- *ci = MAXNUMF;
- return(0);
- }
-done:
-if( sign )
- s = -s;
-
-*si = s;
-
-*ci = EUL + logf(x) + c;
-return(0);
-}
diff --git a/libm/float/sicif.c b/libm/float/sicif.c
deleted file mode 100644
index 04633ee68..000000000
--- a/libm/float/sicif.c
+++ /dev/null
@@ -1,279 +0,0 @@
-/* sicif.c
- *
- * Sine and cosine integrals
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, Ci, Si;
- *
- * sicif( x, &Si, &Ci );
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the integrals
- *
- * x
- * -
- * | cos t - 1
- * Ci(x) = eul + ln x + | --------- dt,
- * | t
- * -
- * 0
- * x
- * -
- * | sin t
- * Si(x) = | ----- dt
- * | t
- * -
- * 0
- *
- * where eul = 0.57721566490153286061 is Euler's constant.
- * The integrals are approximated by rational functions.
- * For x > 8 auxiliary functions f(x) and g(x) are employed
- * such that
- *
- * Ci(x) = f(x) sin(x) - g(x) cos(x)
- * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
- *
- *
- * ACCURACY:
- * Test interval = [0,50].
- * Absolute error, except relative when > 1:
- * arithmetic function # trials peak rms
- * IEEE Si 30000 2.1e-7 4.3e-8
- * IEEE Ci 30000 3.9e-7 2.2e-8
- */
-
-/*
-Cephes Math Library Release 2.1: January, 1989
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-static float SN[] = {
--8.39167827910303881427E-11,
- 4.62591714427012837309E-8,
--9.75759303843632795789E-6,
- 9.76945438170435310816E-4,
--4.13470316229406538752E-2,
- 1.00000000000000000302E0,
-};
-static float SD[] = {
- 2.03269266195951942049E-12,
- 1.27997891179943299903E-9,
- 4.41827842801218905784E-7,
- 9.96412122043875552487E-5,
- 1.42085239326149893930E-2,
- 9.99999999999999996984E-1,
-};
-
-static float CN[] = {
- 2.02524002389102268789E-11,
--1.35249504915790756375E-8,
- 3.59325051419993077021E-6,
--4.74007206873407909465E-4,
- 2.89159652607555242092E-2,
--1.00000000000000000080E0,
-};
-static float CD[] = {
- 4.07746040061880559506E-12,
- 3.06780997581887812692E-9,
- 1.23210355685883423679E-6,
- 3.17442024775032769882E-4,
- 5.10028056236446052392E-2,
- 4.00000000000000000080E0,
-};
-
-
-static float FN4[] = {
- 4.23612862892216586994E0,
- 5.45937717161812843388E0,
- 1.62083287701538329132E0,
- 1.67006611831323023771E-1,
- 6.81020132472518137426E-3,
- 1.08936580650328664411E-4,
- 5.48900223421373614008E-7,
-};
-static float FD4[] = {
-/* 1.00000000000000000000E0,*/
- 8.16496634205391016773E0,
- 7.30828822505564552187E0,
- 1.86792257950184183883E0,
- 1.78792052963149907262E-1,
- 7.01710668322789753610E-3,
- 1.10034357153915731354E-4,
- 5.48900252756255700982E-7,
-};
-
-
-static float FN8[] = {
- 4.55880873470465315206E-1,
- 7.13715274100146711374E-1,
- 1.60300158222319456320E-1,
- 1.16064229408124407915E-2,
- 3.49556442447859055605E-4,
- 4.86215430826454749482E-6,
- 3.20092790091004902806E-8,
- 9.41779576128512936592E-11,
- 9.70507110881952024631E-14,
-};
-static float FD8[] = {
-/* 1.00000000000000000000E0,*/
- 9.17463611873684053703E-1,
- 1.78685545332074536321E-1,
- 1.22253594771971293032E-2,
- 3.58696481881851580297E-4,
- 4.92435064317881464393E-6,
- 3.21956939101046018377E-8,
- 9.43720590350276732376E-11,
- 9.70507110881952025725E-14,
-};
-
-static float GN4[] = {
- 8.71001698973114191777E-2,
- 6.11379109952219284151E-1,
- 3.97180296392337498885E-1,
- 7.48527737628469092119E-2,
- 5.38868681462177273157E-3,
- 1.61999794598934024525E-4,
- 1.97963874140963632189E-6,
- 7.82579040744090311069E-9,
-};
-static float GD4[] = {
-/* 1.00000000000000000000E0,*/
- 1.64402202413355338886E0,
- 6.66296701268987968381E-1,
- 9.88771761277688796203E-2,
- 6.22396345441768420760E-3,
- 1.73221081474177119497E-4,
- 2.02659182086343991969E-6,
- 7.82579218933534490868E-9,
-};
-
-static float GN8[] = {
- 6.97359953443276214934E-1,
- 3.30410979305632063225E-1,
- 3.84878767649974295920E-2,
- 1.71718239052347903558E-3,
- 3.48941165502279436777E-5,
- 3.47131167084116673800E-7,
- 1.70404452782044526189E-9,
- 3.85945925430276600453E-12,
- 3.14040098946363334640E-15,
-};
-static float GD8[] = {
-/* 1.00000000000000000000E0,*/
- 1.68548898811011640017E0,
- 4.87852258695304967486E-1,
- 4.67913194259625806320E-2,
- 1.90284426674399523638E-3,
- 3.68475504442561108162E-5,
- 3.57043223443740838771E-7,
- 1.72693748966316146736E-9,
- 3.87830166023954706752E-12,
- 3.14040098946363335242E-15,
-};
-
-#define EUL 0.57721566490153286061
-extern float MAXNUMF, PIO2F, MACHEPF;
-
-
-
-#ifdef ANSIC
-float logf(float), sinf(float), cosf(float);
-float polevlf(float, float *, int);
-float p1evlf(float, float *, int);
-#else
-float logf(), sinf(), cosf(), polevlf(), p1evlf();
-#endif
-
-
-int sicif( float xx, float *si, float *ci )
-{
-float x, z, c, s, f, g;
-int sign;
-
-x = xx;
-if( x < 0.0 )
- {
- sign = -1;
- x = -x;
- }
-else
- sign = 0;
-
-
-if( x == 0.0 )
- {
- *si = 0.0;
- *ci = -MAXNUMF;
- return( 0 );
- }
-
-
-if( x > 1.0e9 )
- {
- *si = PIO2F - cosf(x)/x;
- *ci = sinf(x)/x;
- return( 0 );
- }
-
-
-
-if( x > 4.0 )
- goto asympt;
-
-z = x * x;
-s = x * polevlf( z, SN, 5 ) / polevlf( z, SD, 5 );
-c = z * polevlf( z, CN, 5 ) / polevlf( z, CD, 5 );
-
-if( sign )
- s = -s;
-*si = s;
-*ci = EUL + logf(x) + c; /* real part if x < 0 */
-return(0);
-
-
-
-/* The auxiliary functions are:
- *
- *
- * *si = *si - PIO2;
- * c = cos(x);
- * s = sin(x);
- *
- * t = *ci * s - *si * c;
- * a = *ci * c + *si * s;
- *
- * *si = t;
- * *ci = -a;
- */
-
-
-asympt:
-
-s = sinf(x);
-c = cosf(x);
-z = 1.0/(x*x);
-if( x < 8.0 )
- {
- f = polevlf( z, FN4, 6 ) / (x * p1evlf( z, FD4, 7 ));
- g = z * polevlf( z, GN4, 7 ) / p1evlf( z, GD4, 7 );
- }
-else
- {
- f = polevlf( z, FN8, 8 ) / (x * p1evlf( z, FD8, 8 ));
- g = z * polevlf( z, GN8, 8 ) / p1evlf( z, GD8, 9 );
- }
-*si = PIO2F - f * c - g * s;
-if( sign )
- *si = -( *si );
-*ci = f * s - g * c;
-
-return(0);
-}
diff --git a/libm/float/sindgf.c b/libm/float/sindgf.c
deleted file mode 100644
index a3f5851c8..000000000
--- a/libm/float/sindgf.c
+++ /dev/null
@@ -1,232 +0,0 @@
-/* sindgf.c
- *
- * Circular sine of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sindgf();
- *
- * y = sindgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-3600 100,000 1.2e-7 3.0e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2^24 0.0
- *
- */
-
-/* cosdgf.c
- *
- * Circular cosine of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cosdgf();
- *
- * y = cosdgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1985, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-/* Single precision circular sine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 6.8e-8
- * rms relative error: 2.6e-8
- */
-#include <math.h>
-
-
-/*static float FOPI = 1.27323954473516;*/
-
-extern float PIO4F;
-
-/* These are for a 24-bit significand: */
-static float T24M1 = 16777215.;
-
-static float PI180 = 0.0174532925199432957692; /* pi/180 */
-
-float sindgf( float xx )
-{
-float x, y, z;
-long j;
-int sign;
-
-sign = 1;
-x = xx;
-if( xx < 0 )
- {
- sign = -1;
- x = -xx;
- }
-if( x > T24M1 )
- {
- mtherr( "sindgf", TLOSS );
- return(0.0);
- }
-j = 0.022222222222222222222 * x; /* integer part of x/45 */
-y = j;
-/* map zeros to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
-j &= 7; /* octant modulo 360 degrees */
-/* reflect in x axis */
-if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
-
-x = x - y * 45.0;
-x *= PI180; /* multiply by pi/180 to convert to radians */
-
-z = x * x;
-if( (j==1) || (j==2) )
- {
-/*
- y = ((( 2.4462803166E-5 * z
- - 1.3887580023E-3) * z
- + 4.1666650433E-2) * z
- - 4.9999999968E-1) * z
- + 1.0;
-*/
-
-/* measured relative error in +/- pi/4 is 7.8e-8 */
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
-else
- {
-/* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] */
- y = ((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x;
- y += x;
- }
-
-if(sign < 0)
- y = -y;
-return( y);
-}
-
-
-/* Single precision circular cosine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 8.3e-8
- * rms relative error: 2.2e-8
- */
-
-float cosdgf( float xx )
-{
-register float x, y, z;
-int j, sign;
-
-/* make argument positive */
-sign = 1;
-x = xx;
-if( x < 0 )
- x = -x;
-
-if( x > T24M1 )
- {
- mtherr( "cosdgf", TLOSS );
- return(0.0);
- }
-
-j = 0.02222222222222222222222 * x; /* integer part of x/PIO4 */
-y = j;
-/* integer and fractional part modulo one octant */
-if( j & 1 ) /* map zeros to origin */
- {
- j += 1;
- y += 1.0;
- }
-j &= 7;
-if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
-
-if( j > 1 )
- sign = -sign;
-
-x = x - y * 45.0; /* x mod 45 degrees */
-x *= PI180; /* multiply by pi/180 to convert to radians */
-
-z = x * x;
-
-if( (j==1) || (j==2) )
- {
- y = (((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x)
- + x;
- }
-else
- {
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
-if(sign < 0)
- y = -y;
-return( y );
-}
-
diff --git a/libm/float/sinf.c b/libm/float/sinf.c
deleted file mode 100644
index 2f1bb45b8..000000000
--- a/libm/float/sinf.c
+++ /dev/null
@@ -1,283 +0,0 @@
-/* sinf.c
- *
- * Circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sinf();
- *
- * y = sinf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -4096,+4096 100,000 1.2e-7 3.0e-8
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2^24 0.0
- *
- * Partial loss of accuracy begins to occur at x = 2^13
- * = 8192. Results may be meaningless for x >= 2^24
- * The routine as implemented flags a TLOSS error
- * for x >= 2^24 and returns 0.0.
- */
-
-/* cosf.c
- *
- * Circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cosf();
- *
- * y = cosf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1985, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-/* Single precision circular sine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 6.8e-8
- * rms relative error: 2.6e-8
- */
-#include <math.h>
-
-
-static float FOPI = 1.27323954473516;
-
-extern float PIO4F;
-/* Note, these constants are for a 32-bit significand: */
-/*
-static float DP1 = 0.7853851318359375;
-static float DP2 = 1.30315311253070831298828125e-5;
-static float DP3 = 3.03855025325309630e-11;
-static float lossth = 65536.;
-*/
-
-/* These are for a 24-bit significand: */
-static float DP1 = 0.78515625;
-static float DP2 = 2.4187564849853515625e-4;
-static float DP3 = 3.77489497744594108e-8;
-static float lossth = 8192.;
-static float T24M1 = 16777215.;
-
-static float sincof[] = {
--1.9515295891E-4,
- 8.3321608736E-3,
--1.6666654611E-1
-};
-static float coscof[] = {
- 2.443315711809948E-005,
--1.388731625493765E-003,
- 4.166664568298827E-002
-};
-
-float sinf( float xx )
-{
-float *p;
-float x, y, z;
-register unsigned long j;
-register int sign;
-
-sign = 1;
-x = xx;
-if( xx < 0 )
- {
- sign = -1;
- x = -xx;
- }
-if( x > T24M1 )
- {
- mtherr( "sinf", TLOSS );
- return(0.0);
- }
-j = FOPI * x; /* integer part of x/(PI/4) */
-y = j;
-/* map zeros to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
-j &= 7; /* octant modulo 360 degrees */
-/* reflect in x axis */
-if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
-
-if( x > lossth )
- {
- mtherr( "sinf", PLOSS );
- x = x - y * PIO4F;
- }
-else
- {
-/* Extended precision modular arithmetic */
- x = ((x - y * DP1) - y * DP2) - y * DP3;
- }
-/*einits();*/
-z = x * x;
-if( (j==1) || (j==2) )
- {
-/* measured relative error in +/- pi/4 is 7.8e-8 */
-/*
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
-*/
- p = coscof;
- y = *p++;
- y = y * z + *p++;
- y = y * z + *p++;
- y *= z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
-else
- {
-/* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] */
-/*
- y = ((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x;
- y += x;
-*/
- p = sincof;
- y = *p++;
- y = y * z + *p++;
- y = y * z + *p++;
- y *= z * x;
- y += x;
- }
-/*einitd();*/
-if(sign < 0)
- y = -y;
-return( y);
-}
-
-
-/* Single precision circular cosine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 8.3e-8
- * rms relative error: 2.2e-8
- */
-
-float cosf( float xx )
-{
-float x, y, z;
-int j, sign;
-
-/* make argument positive */
-sign = 1;
-x = xx;
-if( x < 0 )
- x = -x;
-
-if( x > T24M1 )
- {
- mtherr( "cosf", TLOSS );
- return(0.0);
- }
-
-j = FOPI * x; /* integer part of x/PIO4 */
-y = j;
-/* integer and fractional part modulo one octant */
-if( j & 1 ) /* map zeros to origin */
- {
- j += 1;
- y += 1.0;
- }
-j &= 7;
-if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
-
-if( j > 1 )
- sign = -sign;
-
-if( x > lossth )
- {
- mtherr( "cosf", PLOSS );
- x = x - y * PIO4F;
- }
-else
-/* Extended precision modular arithmetic */
- x = ((x - y * DP1) - y * DP2) - y * DP3;
-
-z = x * x;
-
-if( (j==1) || (j==2) )
- {
- y = (((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x)
- + x;
- }
-else
- {
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
-if(sign < 0)
- y = -y;
-return( y );
-}
-
diff --git a/libm/float/sinhf.c b/libm/float/sinhf.c
deleted file mode 100644
index e8baaf4fa..000000000
--- a/libm/float/sinhf.c
+++ /dev/null
@@ -1,87 +0,0 @@
-/* sinhf.c
- *
- * Hyperbolic sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sinhf();
- *
- * y = sinhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic sine of argument in the range MINLOGF to
- * MAXLOGF.
- *
- * The range is partitioned into two segments. If |x| <= 1, a
- * polynomial approximation is used.
- * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-MAXLOG 100000 1.1e-7 2.9e-8
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision hyperbolic sine
- * test interval: [-1, +1]
- * trials: 10000
- * peak relative error: 9.0e-8
- * rms relative error: 3.0e-8
- */
-#include <math.h>
-extern float MAXLOGF, MAXNUMF;
-
-float expf( float );
-
-float sinhf( float xx )
-{
-register float z;
-float x;
-
-x = xx;
-if( xx < 0 )
- z = -x;
-else
- z = x;
-
-if( z > MAXLOGF )
- {
- mtherr( "sinhf", DOMAIN );
- if( x > 0 )
- return( MAXNUMF );
- else
- return( -MAXNUMF );
- }
-if( z > 1.0 )
- {
- z = expf(z);
- z = 0.5*z - (0.5/z);
- if( x < 0 )
- z = -z;
- }
-else
- {
- z = x * x;
- z =
- (( 2.03721912945E-4 * z
- + 8.33028376239E-3) * z
- + 1.66667160211E-1) * z * x
- + x;
- }
-return( z );
-}
diff --git a/libm/float/spencef.c b/libm/float/spencef.c
deleted file mode 100644
index 52799babe..000000000
--- a/libm/float/spencef.c
+++ /dev/null
@@ -1,135 +0,0 @@
-/* spencef.c
- *
- * Dilogarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, spencef();
- *
- * y = spencef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the integral
- *
- * x
- * -
- * | | log t
- * spence(x) = - | ----- dt
- * | | t - 1
- * -
- * 1
- *
- * for x >= 0. A rational approximation gives the integral in
- * the interval (0.5, 1.5). Transformation formulas for 1/x
- * and 1-x are employed outside the basic expansion range.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,4 30000 4.4e-7 6.3e-8
- *
- *
- */
-
-/* spence.c */
-
-
-/*
-Cephes Math Library Release 2.1: January, 1989
-Copyright 1985, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-static float A[8] = {
- 4.65128586073990045278E-5,
- 7.31589045238094711071E-3,
- 1.33847639578309018650E-1,
- 8.79691311754530315341E-1,
- 2.71149851196553469920E0,
- 4.25697156008121755724E0,
- 3.29771340985225106936E0,
- 1.00000000000000000126E0,
-};
-static float B[8] = {
- 6.90990488912553276999E-4,
- 2.54043763932544379113E-2,
- 2.82974860602568089943E-1,
- 1.41172597751831069617E0,
- 3.63800533345137075418E0,
- 5.03278880143316990390E0,
- 3.54771340985225096217E0,
- 9.99999999999999998740E-1,
-};
-
-extern float PIF, MACHEPF;
-
-/* pi * pi / 6 */
-#define PIFS 1.64493406684822643647
-
-
-float logf(float), polevlf(float, float *, int);
-float spencef(float xx)
-{
-float x, w, y, z;
-int flag;
-
-x = xx;
-if( x < 0.0 )
- {
- mtherr( "spencef", DOMAIN );
- return(0.0);
- }
-
-if( x == 1.0 )
- return( 0.0 );
-
-if( x == 0.0 )
- return( PIFS );
-
-flag = 0;
-
-if( x > 2.0 )
- {
- x = 1.0/x;
- flag |= 2;
- }
-
-if( x > 1.5 )
- {
- w = (1.0/x) - 1.0;
- flag |= 2;
- }
-
-else if( x < 0.5 )
- {
- w = -x;
- flag |= 1;
- }
-
-else
- w = x - 1.0;
-
-
-y = -w * polevlf( w, A, 7) / polevlf( w, B, 7 );
-
-if( flag & 1 )
- y = PIFS - logf(x) * logf(1.0-x) - y;
-
-if( flag & 2 )
- {
- z = logf(x);
- y = -0.5 * z * z - y;
- }
-
-return( y );
-}
diff --git a/libm/float/sqrtf.c b/libm/float/sqrtf.c
deleted file mode 100644
index bc75a907b..000000000
--- a/libm/float/sqrtf.c
+++ /dev/null
@@ -1,140 +0,0 @@
-/* sqrtf.c
- *
- * Square root
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sqrtf();
- *
- * y = sqrtf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the square root of x.
- *
- * Range reduction involves isolating the power of two of the
- * argument and using a polynomial approximation to obtain
- * a rough value for the square root. Then Heron's iteration
- * is used three times to converge to an accurate value.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1.e38 100000 8.7e-8 2.9e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sqrtf domain x < 0 0.0
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision square root
- * test interval: [sqrt(2)/2, sqrt(2)]
- * trials: 30000
- * peak relative error: 8.8e-8
- * rms relative error: 3.3e-8
- *
- * test interval: [0.01, 100.0]
- * trials: 50000
- * peak relative error: 8.7e-8
- * rms relative error: 3.3e-8
- *
- * Copyright (C) 1989 by Stephen L. Moshier. All rights reserved.
- */
-#include <math.h>
-
-#ifdef ANSIC
-float frexpf( float, int * );
-float ldexpf( float, int );
-
-float sqrtf( float xx )
-#else
-float frexpf(), ldexpf();
-
-float sqrtf(xx)
-float xx;
-#endif
-{
-float f, x, y;
-int e;
-
-f = xx;
-if( f <= 0.0 )
- {
- if( f < 0.0 )
- mtherr( "sqrtf", DOMAIN );
- return( 0.0 );
- }
-
-x = frexpf( f, &e ); /* f = x * 2**e, 0.5 <= x < 1.0 */
-/* If power of 2 is odd, double x and decrement the power of 2. */
-if( e & 1 )
- {
- x = x + x;
- e -= 1;
- }
-
-e >>= 1; /* The power of 2 of the square root. */
-
-if( x > 1.41421356237 )
- {
-/* x is between sqrt(2) and 2. */
- x = x - 2.0;
- y =
- ((((( -9.8843065718E-4 * x
- + 7.9479950957E-4) * x
- - 3.5890535377E-3) * x
- + 1.1028809744E-2) * x
- - 4.4195203560E-2) * x
- + 3.5355338194E-1) * x
- + 1.41421356237E0;
- goto sqdon;
- }
-
-if( x > 0.707106781187 )
- {
-/* x is between sqrt(2)/2 and sqrt(2). */
- x = x - 1.0;
- y =
- ((((( 1.35199291026E-2 * x
- - 2.26657767832E-2) * x
- + 2.78720776889E-2) * x
- - 3.89582788321E-2) * x
- + 6.24811144548E-2) * x
- - 1.25001503933E-1) * x * x
- + 0.5 * x
- + 1.0;
- goto sqdon;
- }
-
-/* x is between 0.5 and sqrt(2)/2. */
-x = x - 0.5;
-y =
-((((( -3.9495006054E-1 * x
- + 5.1743034569E-1) * x
- - 4.3214437330E-1) * x
- + 3.5310730460E-1) * x
- - 3.5354581892E-1) * x
- + 7.0710676017E-1) * x
- + 7.07106781187E-1;
-
-sqdon:
-y = ldexpf( y, e ); /* y = y * 2**e */
-return( y);
-}
diff --git a/libm/float/stdtrf.c b/libm/float/stdtrf.c
deleted file mode 100644
index 76b14c1f6..000000000
--- a/libm/float/stdtrf.c
+++ /dev/null
@@ -1,154 +0,0 @@
-/* stdtrf.c
- *
- * Student's t distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float t, stdtrf();
- * short k;
- *
- * y = stdtrf( k, t );
- *
- *
- * DESCRIPTION:
- *
- * Computes the integral from minus infinity to t of the Student
- * t distribution with integer k > 0 degrees of freedom:
- *
- * t
- * -
- * | |
- * - | 2 -(k+1)/2
- * | ( (k+1)/2 ) | ( x )
- * ---------------------- | ( 1 + --- ) dx
- * - | ( k )
- * sqrt( k pi ) | ( k/2 ) |
- * | |
- * -
- * -inf.
- *
- * Relation to incomplete beta integral:
- *
- * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
- * where
- * z = k/(k + t**2).
- *
- * For t < -1, this is the method of computation. For higher t,
- * a direct method is derived from integration by parts.
- * Since the function is symmetric about t=0, the area under the
- * right tail of the density is found by calling the function
- * with -t instead of t.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +/- 100 5000 2.3e-5 2.9e-6
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-extern float PIF, MACHEPF;
-
-#ifdef ANSIC
-float sqrtf(float), atanf(float), incbetf(float, float, float);
-#else
-float sqrtf(), atanf(), incbetf();
-#endif
-
-
-
-float stdtrf( int k, float tt )
-{
-float t, x, rk, z, f, tz, p, xsqk;
-int j;
-
-t = tt;
-if( k <= 0 )
- {
- mtherr( "stdtrf", DOMAIN );
- return(0.0);
- }
-
-if( t == 0 )
- return( 0.5 );
-
-if( t < -1.0 )
- {
- rk = k;
- z = rk / (rk + t * t);
- p = 0.5 * incbetf( 0.5*rk, 0.5, z );
- return( p );
- }
-
-/* compute integral from -t to + t */
-
-if( t < 0 )
- x = -t;
-else
- x = t;
-
-rk = k; /* degrees of freedom */
-z = 1.0 + ( x * x )/rk;
-
-/* test if k is odd or even */
-if( (k & 1) != 0)
- {
-
- /* computation for odd k */
-
- xsqk = x/sqrtf(rk);
- p = atanf( xsqk );
- if( k > 1 )
- {
- f = 1.0;
- tz = 1.0;
- j = 3;
- while( (j<=(k-2)) && ( (tz/f) > MACHEPF ) )
- {
- tz *= (j-1)/( z * j );
- f += tz;
- j += 2;
- }
- p += f * xsqk/z;
- }
- p *= 2.0/PIF;
- }
-
-
-else
- {
-
- /* computation for even k */
-
- f = 1.0;
- tz = 1.0;
- j = 2;
-
- while( ( j <= (k-2) ) && ( (tz/f) > MACHEPF ) )
- {
- tz *= (j - 1)/( z * j );
- f += tz;
- j += 2;
- }
- p = f * x/sqrtf(z*rk);
- }
-
-/* common exit */
-
-
-if( t < 0 )
- p = -p; /* note destruction of relative accuracy */
-
- p = 0.5 + 0.5 * p;
-return(p);
-}
diff --git a/libm/float/struvef.c b/libm/float/struvef.c
deleted file mode 100644
index 4cf8854ed..000000000
--- a/libm/float/struvef.c
+++ /dev/null
@@ -1,315 +0,0 @@
-/* struvef.c
- *
- * Struve function
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, struvef();
- *
- * y = struvef( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the Struve function Hv(x) of order v, argument x.
- * Negative x is rejected unless v is an integer.
- *
- * This module also contains the hypergeometric functions 1F2
- * and 3F0 and a routine for the Bessel function Yv(x) with
- * noninteger v.
- *
- *
- *
- * ACCURACY:
- *
- * v varies from 0 to 10.
- * Absolute error (relative error when |Hv(x)| > 1):
- * arithmetic domain # trials peak rms
- * IEEE -10,10 100000 9.0e-5 4.0e-6
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-#define DEBUG 0
-
-extern float MACHEPF, MAXNUMF, PIF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float gammaf(float), powf(float, float), sqrtf(float);
-float yvf(float, float);
-float floorf(float), ynf(int, float);
-float jvf(float, float);
-float sinf(float), cosf(float);
-#else
-float gammaf(), powf(), sqrtf(), yvf();
-float floorf(), ynf(), jvf(), sinf(), cosf();
-#endif
-
-float onef2f( float aa, float bb, float cc, float xx, float *err )
-{
-float a, b, c, x, n, a0, sum, t;
-float an, bn, cn, max, z;
-
-a = aa;
-b = bb;
-c = cc;
-x = xx;
-an = a;
-bn = b;
-cn = c;
-a0 = 1.0;
-sum = 1.0;
-n = 1.0;
-t = 1.0;
-max = 0.0;
-
-do
- {
- if( an == 0 )
- goto done;
- if( bn == 0 )
- goto error;
- if( cn == 0 )
- goto error;
- if( (a0 > 1.0e34) || (n > 200) )
- goto error;
- a0 *= (an * x) / (bn * cn * n);
- sum += a0;
- an += 1.0;
- bn += 1.0;
- cn += 1.0;
- n += 1.0;
- z = fabsf( a0 );
- if( z > max )
- max = z;
- if( sum != 0 )
- t = fabsf( a0 / sum );
- else
- t = z;
- }
-while( t > MACHEPF );
-
-done:
-
-*err = fabsf( MACHEPF*max /sum );
-
-#if DEBUG
- printf(" onef2f cancellation error %.5E\n", *err );
-#endif
-
-goto xit;
-
-error:
-#if DEBUG
-printf("onef2f does not converge\n");
-#endif
-*err = MAXNUMF;
-
-xit:
-
-#if DEBUG
-printf("onef2( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum);
-#endif
-return(sum);
-}
-
-
-
-float threef0f( float aa, float bb, float cc, float xx, float *err )
-{
-float a, b, c, x, n, a0, sum, t, conv, conv1;
-float an, bn, cn, max, z;
-
-a = aa;
-b = bb;
-c = cc;
-x = xx;
-an = a;
-bn = b;
-cn = c;
-a0 = 1.0;
-sum = 1.0;
-n = 1.0;
-t = 1.0;
-max = 0.0;
-conv = 1.0e38;
-conv1 = conv;
-
-do
- {
- if( an == 0.0 )
- goto done;
- if( bn == 0.0 )
- goto done;
- if( cn == 0.0 )
- goto done;
- if( (a0 > 1.0e34) || (n > 200) )
- goto error;
- a0 *= (an * bn * cn * x) / n;
- an += 1.0;
- bn += 1.0;
- cn += 1.0;
- n += 1.0;
- z = fabsf( a0 );
- if( z > max )
- max = z;
- if( z >= conv )
- {
- if( (z < max) && (z > conv1) )
- goto done;
- }
- conv1 = conv;
- conv = z;
- sum += a0;
- if( sum != 0 )
- t = fabsf( a0 / sum );
- else
- t = z;
- }
-while( t > MACHEPF );
-
-done:
-
-t = fabsf( MACHEPF*max/sum );
-#if DEBUG
- printf(" threef0f cancellation error %.5E\n", t );
-#endif
-
-max = fabsf( conv/sum );
-if( max > t )
- t = max;
-#if DEBUG
- printf(" threef0f convergence %.5E\n", max );
-#endif
-
-goto xit;
-
-error:
-#if DEBUG
-printf("threef0f does not converge\n");
-#endif
-t = MAXNUMF;
-
-xit:
-
-#if DEBUG
-printf("threef0f( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum);
-#endif
-
-*err = t;
-return(sum);
-}
-
-
-
-
-float struvef( float vv, float xx )
-{
-float v, x, y, ya, f, g, h, t;
-float onef2err, threef0err;
-
-v = vv;
-x = xx;
-f = floorf(v);
-if( (v < 0) && ( v-f == 0.5 ) )
- {
- y = jvf( -v, x );
- f = 1.0 - f;
- g = 2.0 * floorf(0.5*f);
- if( g != f )
- y = -y;
- return(y);
- }
-t = 0.25*x*x;
-f = fabsf(x);
-g = 1.5 * fabsf(v);
-if( (f > 30.0) && (f > g) )
- {
- onef2err = MAXNUMF;
- y = 0.0;
- }
-else
- {
- y = onef2f( 1.0, 1.5, 1.5+v, -t, &onef2err );
- }
-
-if( (f < 18.0) || (x < 0.0) )
- {
- threef0err = MAXNUMF;
- ya = 0.0;
- }
-else
- {
- ya = threef0f( 1.0, 0.5, 0.5-v, -1.0/t, &threef0err );
- }
-
-f = sqrtf( PIF );
-h = powf( 0.5*x, v-1.0 );
-
-if( onef2err <= threef0err )
- {
- g = gammaf( v + 1.5 );
- y = y * h * t / ( 0.5 * f * g );
- return(y);
- }
-else
- {
- g = gammaf( v + 0.5 );
- ya = ya * h / ( f * g );
- ya = ya + yvf( v, x );
- return(ya);
- }
-}
-
-
-
-
-/* Bessel function of noninteger order
- */
-
-float yvf( float vv, float xx )
-{
-float v, x, y, t;
-int n;
-
-v = vv;
-x = xx;
-y = floorf( v );
-if( y == v )
- {
- n = v;
- y = ynf( n, x );
- return( y );
- }
-t = PIF * v;
-y = (cosf(t) * jvf( v, x ) - jvf( -v, x ))/sinf(t);
-return( y );
-}
-
-/* Crossover points between ascending series and asymptotic series
- * for Struve function
- *
- * v x
- *
- * 0 19.2
- * 1 18.95
- * 2 19.15
- * 3 19.3
- * 5 19.7
- * 10 21.35
- * 20 26.35
- * 30 32.31
- * 40 40.0
- */
diff --git a/libm/float/tandgf.c b/libm/float/tandgf.c
deleted file mode 100644
index dc55ad5e4..000000000
--- a/libm/float/tandgf.c
+++ /dev/null
@@ -1,206 +0,0 @@
-/* tandgf.c
- *
- * Circular tangent of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tandgf();
- *
- * y = tandgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular tangent of the radian argument x.
- *
- * Range reduction is into intervals of 45 degrees.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-2^24 50000 2.4e-7 4.8e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * tanf total loss x > 2^24 0.0
- *
- */
- /* cotdgf.c
- *
- * Circular cotangent of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cotdgf();
- *
- * y = cotdgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- * A common routine computes either the tangent or cotangent.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-2^24 50000 2.4e-7 4.8e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * cot total loss x > 2^24 0.0
- * cot singularity x = 0 MAXNUMF
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision circular tangent
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 8.7e-8
- * rms relative error: 2.8e-8
- */
-#include <math.h>
-
-extern float MAXNUMF;
-
-static float T24M1 = 16777215.;
-static float PI180 = 0.0174532925199432957692; /* pi/180 */
-
-static float tancotf( float xx, int cotflg )
-{
-float x, y, z, zz;
-long j;
-int sign;
-
-
-/* make argument positive but save the sign */
-if( xx < 0.0 )
- {
- x = -xx;
- sign = -1;
- }
-else
- {
- x = xx;
- sign = 1;
- }
-
-if( x > T24M1 )
- {
- if( cotflg )
- mtherr( "cotdgf", TLOSS );
- else
- mtherr( "tandgf", TLOSS );
- return(0.0);
- }
-
-/* compute x mod PIO4 */
-j = 0.022222222222222222222 * x; /* integer part of x/45 */
-y = j;
-
-/* map zeros and singularities to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
-
-z = x - y * 45.0;
-z *= PI180; /* multiply by pi/180 to convert to radians */
-
-zz = z * z;
-
-if( x > 1.0e-4 )
- {
-/* 1.7e-8 relative error in [-pi/4, +pi/4] */
- y =
- ((((( 9.38540185543E-3 * zz
- + 3.11992232697E-3) * zz
- + 2.44301354525E-2) * zz
- + 5.34112807005E-2) * zz
- + 1.33387994085E-1) * zz
- + 3.33331568548E-1) * zz * z
- + z;
- }
-else
- {
- y = z;
- }
-
-if( j & 2 )
- {
- if( cotflg )
- y = -y;
- else
- {
- if( y != 0.0 )
- {
- y = -1.0/y;
- }
- else
- {
- mtherr( "tandgf", SING );
- y = MAXNUMF;
- }
- }
- }
-else
- {
- if( cotflg )
- {
- if( y != 0.0 )
- y = 1.0/y;
- else
- {
- mtherr( "cotdgf", SING );
- y = MAXNUMF;
- }
- }
- }
-
-if( sign < 0 )
- y = -y;
-
-return( y );
-}
-
-
-float tandgf( float x )
-{
-
-return( tancotf(x,0) );
-}
-
-float cotdgf( float x )
-{
-
-if( x == 0.0 )
- {
- mtherr( "cotdgf", SING );
- return( MAXNUMF );
- }
-return( tancotf(x,1) );
-}
-
diff --git a/libm/float/tanf.c b/libm/float/tanf.c
deleted file mode 100644
index 5bbf43075..000000000
--- a/libm/float/tanf.c
+++ /dev/null
@@ -1,192 +0,0 @@
-/* tanf.c
- *
- * Circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tanf();
- *
- * y = tanf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular tangent of the radian argument x.
- *
- * Range reduction is modulo pi/4. A polynomial approximation
- * is employed in the basic interval [0, pi/4].
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-4096 100000 3.3e-7 4.5e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * tanf total loss x > 2^24 0.0
- *
- */
- /* cotf.c
- *
- * Circular cotangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cotf();
- *
- * y = cotf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular cotangent of the radian argument x.
- * A common routine computes either the tangent or cotangent.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-4096 100000 3.0e-7 4.5e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * cot total loss x > 2^24 0.0
- * cot singularity x = 0 MAXNUMF
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision circular tangent
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 8.7e-8
- * rms relative error: 2.8e-8
- */
-#include <math.h>
-
-extern float MAXNUMF;
-
-static float DP1 = 0.78515625;
-static float DP2 = 2.4187564849853515625e-4;
-static float DP3 = 3.77489497744594108e-8;
-float FOPI = 1.27323954473516; /* 4/pi */
-static float lossth = 8192.;
-/*static float T24M1 = 16777215.;*/
-
-
-static float tancotf( float xx, int cotflg )
-{
-float x, y, z, zz;
-long j;
-int sign;
-
-
-/* make argument positive but save the sign */
-if( xx < 0.0 )
- {
- x = -xx;
- sign = -1;
- }
-else
- {
- x = xx;
- sign = 1;
- }
-
-if( x > lossth )
- {
- if( cotflg )
- mtherr( "cotf", TLOSS );
- else
- mtherr( "tanf", TLOSS );
- return(0.0);
- }
-
-/* compute x mod PIO4 */
-j = FOPI * x; /* integer part of x/(PI/4) */
-y = j;
-
-/* map zeros and singularities to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
-
-z = ((x - y * DP1) - y * DP2) - y * DP3;
-
-zz = z * z;
-
-if( x > 1.0e-4 )
- {
-/* 1.7e-8 relative error in [-pi/4, +pi/4] */
- y =
- ((((( 9.38540185543E-3 * zz
- + 3.11992232697E-3) * zz
- + 2.44301354525E-2) * zz
- + 5.34112807005E-2) * zz
- + 1.33387994085E-1) * zz
- + 3.33331568548E-1) * zz * z
- + z;
- }
-else
- {
- y = z;
- }
-
-if( j & 2 )
- {
- if( cotflg )
- y = -y;
- else
- y = -1.0/y;
- }
-else
- {
- if( cotflg )
- y = 1.0/y;
- }
-
-if( sign < 0 )
- y = -y;
-
-return( y );
-}
-
-
-float tanf( float x )
-{
-
-return( tancotf(x,0) );
-}
-
-float cotf( float x )
-{
-
-if( x == 0.0 )
- {
- mtherr( "cotf", SING );
- return( MAXNUMF );
- }
-return( tancotf(x,1) );
-}
-
diff --git a/libm/float/tanhf.c b/libm/float/tanhf.c
deleted file mode 100644
index 4636192c2..000000000
--- a/libm/float/tanhf.c
+++ /dev/null
@@ -1,88 +0,0 @@
-/* tanhf.c
- *
- * Hyperbolic tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tanhf();
- *
- * y = tanhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic tangent of argument in the range MINLOG to
- * MAXLOG.
- *
- * A polynomial approximation is used for |x| < 0.625.
- * Otherwise,
- *
- * tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -2,2 100000 1.3e-7 2.6e-8
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision hyperbolic tangent
- * test interval: [-0.625, +0.625]
- * trials: 10000
- * peak relative error: 7.2e-8
- * rms relative error: 2.6e-8
- */
-#include <math.h>
-
-extern float MAXLOGF;
-
-float expf( float );
-
-float tanhf( float xx )
-{
-float x, z;
-
-if( xx < 0 )
- x = -xx;
-else
- x = xx;
-
-if( x > 0.5 * MAXLOGF )
- {
- if( xx > 0 )
- return( 1.0 );
- else
- return( -1.0 );
- }
-if( x >= 0.625 )
- {
- x = expf(x+x);
- z = 1.0 - 2.0/(x + 1.0);
- if( xx < 0 )
- z = -z;
- }
-else
- {
- z = x * x;
- z =
- (((( -5.70498872745E-3 * z
- + 2.06390887954E-2) * z
- - 5.37397155531E-2) * z
- + 1.33314422036E-1) * z
- - 3.33332819422E-1) * z * xx
- + xx;
- }
-return( z );
-}
diff --git a/libm/float/ynf.c b/libm/float/ynf.c
deleted file mode 100644
index 55d984b26..000000000
--- a/libm/float/ynf.c
+++ /dev/null
@@ -1,120 +0,0 @@
-/* ynf.c
- *
- * Bessel function of second kind of integer order
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, ynf();
- * int n;
- *
- * y = ynf( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order n, where n is a
- * (possibly negative) integer.
- *
- * The function is evaluated by forward recurrence on
- * n, starting with values computed by the routines
- * y0() and y1().
- *
- * If n = 0 or 1 the routine for y0 or y1 is called
- * directly.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Absolute error, except relative when y > 1:
- *
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 10000 2.3e-6 3.4e-7
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * yn singularity x = 0 MAXNUMF
- * yn overflow MAXNUMF
- *
- * Spot checked against tables for x, n between 0 and 100.
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-extern float MAXNUMF, MAXLOGF;
-
-float y0f(float), y1f(float), logf(float);
-
-float ynf( int nn, float xx )
-{
-float x, an, anm1, anm2, r, xinv;
-int k, n, sign;
-
-x = xx;
-n = nn;
-if( n < 0 )
- {
- n = -n;
- if( (n & 1) == 0 ) /* -1**n */
- sign = 1;
- else
- sign = -1;
- }
-else
- sign = 1;
-
-
-if( n == 0 )
- return( sign * y0f(x) );
-if( n == 1 )
- return( sign * y1f(x) );
-
-/* test for overflow */
-if( x <= 0.0 )
- {
- mtherr( "ynf", SING );
- return( -MAXNUMF );
- }
-if( (x < 1.0) || (n > 29) )
- {
- an = (float )n;
- r = an * logf( an/x );
- if( r > MAXLOGF )
- {
- mtherr( "ynf", OVERFLOW );
- return( -MAXNUMF );
- }
- }
-
-/* forward recurrence on n */
-
-anm2 = y0f(x);
-anm1 = y1f(x);
-k = 1;
-r = 2 * k;
-xinv = 1.0/x;
-do
- {
- an = r * anm1 * xinv - anm2;
- anm2 = anm1;
- anm1 = an;
- r += 2.0;
- ++k;
- }
-while( k < n );
-
-
-return( sign * an );
-}
diff --git a/libm/float/zetacf.c b/libm/float/zetacf.c
deleted file mode 100644
index da2ace6a4..000000000
--- a/libm/float/zetacf.c
+++ /dev/null
@@ -1,266 +0,0 @@
- /* zetacf.c
- *
- * Riemann zeta function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, zetacf();
- *
- * y = zetacf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- *
- * inf.
- * - -x
- * zetac(x) = > k , x > 1,
- * -
- * k=2
- *
- * is related to the Riemann zeta function by
- *
- * Riemann zeta(x) = zetac(x) + 1.
- *
- * Extension of the function definition for x < 1 is implemented.
- * Zero is returned for x > log2(MAXNUM).
- *
- * An overflow error may occur for large negative x, due to the
- * gamma function in the reflection formula.
- *
- * ACCURACY:
- *
- * Tabulated values have full machine accuracy.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1,50 30000 5.5e-7 7.5e-8
- *
- *
- */
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-
-/* Riemann zeta(x) - 1
- * for integer arguments between 0 and 30.
- */
-static float azetacf[] = {
--1.50000000000000000000E0,
- 1.70141183460469231730E38, /* infinity. */
- 6.44934066848226436472E-1,
- 2.02056903159594285400E-1,
- 8.23232337111381915160E-2,
- 3.69277551433699263314E-2,
- 1.73430619844491397145E-2,
- 8.34927738192282683980E-3,
- 4.07735619794433937869E-3,
- 2.00839282608221441785E-3,
- 9.94575127818085337146E-4,
- 4.94188604119464558702E-4,
- 2.46086553308048298638E-4,
- 1.22713347578489146752E-4,
- 6.12481350587048292585E-5,
- 3.05882363070204935517E-5,
- 1.52822594086518717326E-5,
- 7.63719763789976227360E-6,
- 3.81729326499983985646E-6,
- 1.90821271655393892566E-6,
- 9.53962033872796113152E-7,
- 4.76932986787806463117E-7,
- 2.38450502727732990004E-7,
- 1.19219925965311073068E-7,
- 5.96081890512594796124E-8,
- 2.98035035146522801861E-8,
- 1.49015548283650412347E-8,
- 7.45071178983542949198E-9,
- 3.72533402478845705482E-9,
- 1.86265972351304900640E-9,
- 9.31327432419668182872E-10
-};
-
-
-/* 2**x (1 - 1/x) (zeta(x) - 1) = P(1/x)/Q(1/x), 1 <= x <= 10 */
-static float P[9] = {
- 5.85746514569725319540E11,
- 2.57534127756102572888E11,
- 4.87781159567948256438E10,
- 5.15399538023885770696E9,
- 3.41646073514754094281E8,
- 1.60837006880656492731E7,
- 5.92785467342109522998E5,
- 1.51129169964938823117E4,
- 2.01822444485997955865E2,
-};
-static float Q[8] = {
-/* 1.00000000000000000000E0,*/
- 3.90497676373371157516E11,
- 5.22858235368272161797E10,
- 5.64451517271280543351E9,
- 3.39006746015350418834E8,
- 1.79410371500126453702E7,
- 5.66666825131384797029E5,
- 1.60382976810944131506E4,
- 1.96436237223387314144E2,
-};
-
-/* log(zeta(x) - 1 - 2**-x), 10 <= x <= 50 */
-static float A[11] = {
- 8.70728567484590192539E6,
- 1.76506865670346462757E8,
- 2.60889506707483264896E10,
- 5.29806374009894791647E11,
- 2.26888156119238241487E13,
- 3.31884402932705083599E14,
- 5.13778997975868230192E15,
--1.98123688133907171455E15,
--9.92763810039983572356E16,
- 7.82905376180870586444E16,
- 9.26786275768927717187E16,
-};
-static float B[10] = {
-/* 1.00000000000000000000E0,*/
--7.92625410563741062861E6,
--1.60529969932920229676E8,
--2.37669260975543221788E10,
--4.80319584350455169857E11,
--2.07820961754173320170E13,
--2.96075404507272223680E14,
--4.86299103694609136686E15,
- 5.34589509675789930199E15,
- 5.71464111092297631292E16,
--1.79915597658676556828E16,
-};
-
-/* (1-x) (zeta(x) - 1), 0 <= x <= 1 */
-
-static float R[6] = {
--3.28717474506562731748E-1,
- 1.55162528742623950834E1,
--2.48762831680821954401E2,
- 1.01050368053237678329E3,
- 1.26726061410235149405E4,
--1.11578094770515181334E5,
-};
-static float S[5] = {
-/* 1.00000000000000000000E0,*/
- 1.95107674914060531512E1,
- 3.17710311750646984099E2,
- 3.03835500874445748734E3,
- 2.03665876435770579345E4,
- 7.43853965136767874343E4,
-};
-
-
-#define MAXL2 127
-
-/*
- * Riemann zeta function, minus one
- */
-
-extern float MACHEPF, PIO2F, MAXNUMF, PIF;
-
-#ifdef ANSIC
-extern float sinf ( float xx );
-extern float floorf ( float x );
-extern float gammaf ( float xx );
-extern float powf ( float x, float y );
-extern float expf ( float xx );
-extern float polevlf ( float xx, float *coef, int N );
-extern float p1evlf ( float xx, float *coef, int N );
-#else
-float sinf(), floorf(), gammaf(), powf(), expf();
-float polevlf(), p1evlf();
-#endif
-
-float zetacf(float xx)
-{
-int i;
-float x, a, b, s, w;
-
-x = xx;
-if( x < 0.0 )
- {
- if( x < -30.8148 )
- {
- mtherr( "zetacf", OVERFLOW );
- return(0.0);
- }
- s = 1.0 - x;
- w = zetacf( s );
- b = sinf(PIO2F*x) * powf(2.0*PIF, x) * gammaf(s) * (1.0 + w) / PIF;
- return(b - 1.0);
- }
-
-if( x >= MAXL2 )
- return(0.0); /* because first term is 2**-x */
-
-/* Tabulated values for integer argument */
-w = floorf(x);
-if( w == x )
- {
- i = x;
- if( i < 31 )
- {
- return( azetacf[i] );
- }
- }
-
-
-if( x < 1.0 )
- {
- w = 1.0 - x;
- a = polevlf( x, R, 5 ) / ( w * p1evlf( x, S, 5 ));
- return( a );
- }
-
-if( x == 1.0 )
- {
- mtherr( "zetacf", SING );
- return( MAXNUMF );
- }
-
-if( x <= 10.0 )
- {
- b = powf( 2.0, x ) * (x - 1.0);
- w = 1.0/x;
- s = (x * polevlf( w, P, 8 )) / (b * p1evlf( w, Q, 8 ));
- return( s );
- }
-
-if( x <= 50.0 )
- {
- b = powf( 2.0, -x );
- w = polevlf( x, A, 10 ) / p1evlf( x, B, 10 );
- w = expf(w) + b;
- return(w);
- }
-
-
-/* Basic sum of inverse powers */
-
-
-s = 0.0;
-a = 1.0;
-do
- {
- a += 2.0;
- b = powf( a, -x );
- s += b;
- }
-while( b/s > MACHEPF );
-
-b = powf( 2.0, -x );
-s = (s + b)/(1.0-b);
-return(s);
-}
diff --git a/libm/float/zetaf.c b/libm/float/zetaf.c
deleted file mode 100644
index d01f1d2b2..000000000
--- a/libm/float/zetaf.c
+++ /dev/null
@@ -1,175 +0,0 @@
-/* zetaf.c
- *
- * Riemann zeta function of two arguments
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, q, y, zetaf();
- *
- * y = zetaf( x, q );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- *
- * inf.
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=0
- *
- * where x > 1 and q is not a negative integer or zero.
- * The Euler-Maclaurin summation formula is used to obtain
- * the expansion
- *
- * n
- * - -x
- * zeta(x,q) = > (k+q)
- * -
- * k=1
- *
- * 1-x inf. B x(x+1)...(x+2j)
- * (n+q) 1 - 2j
- * + --------- - ------- + > --------------------
- * x-1 x - x+2j+1
- * 2(n+q) j=1 (2j)! (n+q)
- *
- * where the B2j are Bernoulli numbers. Note that (see zetac.c)
- * zeta(x,1) = zetac(x) + 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,25 10000 6.9e-7 1.0e-7
- *
- * Large arguments may produce underflow in powf(), in which
- * case the results are inaccurate.
- *
- * REFERENCE:
- *
- * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
- * Series, and Products, p. 1073; Academic Press, 1980.
- *
- */
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-extern float MAXNUMF, MACHEPF;
-
-/* Expansion coefficients
- * for Euler-Maclaurin summation formula
- * (2k)! / B2k
- * where B2k are Bernoulli numbers
- */
-static float A[] = {
-12.0,
--720.0,
-30240.0,
--1209600.0,
-47900160.0,
--1.8924375803183791606e9, /*1.307674368e12/691*/
-7.47242496e10,
--2.950130727918164224e12, /*1.067062284288e16/3617*/
-1.1646782814350067249e14, /*5.109094217170944e18/43867*/
--4.5979787224074726105e15, /*8.028576626982912e20/174611*/
-1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
--7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
-};
-/* 30 Nov 86 -- error in third coefficient fixed */
-
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-
-float powf( float, float );
-float zetaf(float xx, float qq)
-{
-int i;
-float x, q, a, b, k, s, w, t;
-
-x = xx;
-q = qq;
-if( x == 1.0 )
- return( MAXNUMF );
-
-if( x < 1.0 )
- {
- mtherr( "zetaf", DOMAIN );
- return(0.0);
- }
-
-
-/* Euler-Maclaurin summation formula */
-/*
-if( x < 25.0 )
-{
-*/
-w = 9.0;
-s = powf( q, -x );
-a = q;
-for( i=0; i<9; i++ )
- {
- a += 1.0;
- b = powf( a, -x );
- s += b;
- if( b/s < MACHEPF )
- goto done;
- }
-
-w = a;
-s += b*w/(x-1.0);
-s -= 0.5 * b;
-a = 1.0;
-k = 0.0;
-for( i=0; i<12; i++ )
- {
- a *= x + k;
- b /= w;
- t = a*b/A[i];
- s = s + t;
- t = fabsf(t/s);
- if( t < MACHEPF )
- goto done;
- k += 1.0;
- a *= x + k;
- b /= w;
- k += 1.0;
- }
-done:
-return(s);
-/*
-}
-*/
-
-
-/* Basic sum of inverse powers */
-/*
-pseres:
-
-s = powf( q, -x );
-a = q;
-do
- {
- a += 2.0;
- b = powf( a, -x );
- s += b;
- }
-while( b/s > MACHEPF );
-
-b = powf( 2.0, -x );
-s = (s + b)/(1.0-b);
-return(s);
-*/
-}