diff options
Diffstat (limited to 'libm/float/jvf.c')
-rw-r--r-- | libm/float/jvf.c | 848 |
1 files changed, 0 insertions, 848 deletions
diff --git a/libm/float/jvf.c b/libm/float/jvf.c deleted file mode 100644 index 268a8e4eb..000000000 --- a/libm/float/jvf.c +++ /dev/null @@ -1,848 +0,0 @@ -/* jvf.c - * - * Bessel function of noninteger order - * - * - * - * SYNOPSIS: - * - * float v, x, y, jvf(); - * - * y = jvf( v, x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of order v of the argument, - * where v is real. Negative x is allowed if v is an integer. - * - * Several expansions are included: the ascending power - * series, the Hankel expansion, and two transitional - * expansions for large v. If v is not too large, it - * is reduced by recurrence to a region of best accuracy. - * - * The single precision routine accepts negative v, but with - * reduced accuracy. - * - * - * - * ACCURACY: - * Results for integer v are indicated by *. - * Error criterion is absolute, except relative when |jv()| > 1. - * - * arithmetic domain # trials peak rms - * v x - * IEEE 0,125 0,125 30000 2.0e-6 2.0e-7 - * IEEE -17,0 0,125 30000 1.1e-5 4.0e-7 - * IEEE -100,0 0,125 3000 1.5e-4 7.8e-6 - */ - - -/* -Cephes Math Library Release 2.2: June, 1992 -Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - - -#include <math.h> -#define DEBUG 0 - -extern float MAXNUMF, MACHEPF, MINLOGF, MAXLOGF, PIF; -extern int sgngamf; - -/* BIG = 1/MACHEPF */ -#define BIG 16777216. - -#ifdef ANSIC -float floorf(float), j0f(float), j1f(float); -static float jnxf(float, float); -static float jvsf(float, float); -static float hankelf(float, float); -static float jntf(float, float); -static float recurf( float *, float, float * ); -float sqrtf(float), sinf(float), cosf(float); -float lgamf(float), expf(float), logf(float), powf(float, float); -float gammaf(float), cbrtf(float), acosf(float); -int airyf(float, float *, float *, float *, float *); -float polevlf(float, float *, int); -#else -float floorf(), j0f(), j1f(); -float sqrtf(), sinf(), cosf(); -float lgamf(), expf(), logf(), powf(), gammaf(); -float cbrtf(), polevlf(), acosf(); -void airyf(); -static float recurf(), jvsf(), hankelf(), jnxf(), jntf(), jvsf(); -#endif - - -#define fabsf(x) ( (x) < 0 ? -(x) : (x) ) - -float jvf( float nn, float xx ) -{ -float n, x, k, q, t, y, an, sign; -int i, nint; - -n = nn; -x = xx; -nint = 0; /* Flag for integer n */ -sign = 1.0; /* Flag for sign inversion */ -an = fabsf( n ); -y = floorf( an ); -if( y == an ) - { - nint = 1; - i = an - 16384.0 * floorf( an/16384.0 ); - if( n < 0.0 ) - { - if( i & 1 ) - sign = -sign; - n = an; - } - if( x < 0.0 ) - { - if( i & 1 ) - sign = -sign; - x = -x; - } - if( n == 0.0 ) - return( j0f(x) ); - if( n == 1.0 ) - return( sign * j1f(x) ); - } - -if( (x < 0.0) && (y != an) ) - { - mtherr( "jvf", DOMAIN ); - y = 0.0; - goto done; - } - -y = fabsf(x); - -if( y < MACHEPF ) - goto underf; - -/* Easy cases - x small compared to n */ -t = 3.6 * sqrtf(an); -if( y < t ) - return( sign * jvsf(n,x) ); - -/* x large compared to n */ -k = 3.6 * sqrtf(y); -if( (an < k) && (y > 6.0) ) - return( sign * hankelf(n,x) ); - -if( (n > -100) && (n < 14.0) ) - { -/* Note: if x is too large, the continued - * fraction will fail; but then the - * Hankel expansion can be used. - */ - if( nint != 0 ) - { - k = 0.0; - q = recurf( &n, x, &k ); - if( k == 0.0 ) - { - y = j0f(x)/q; - goto done; - } - if( k == 1.0 ) - { - y = j1f(x)/q; - goto done; - } - } - - if( n >= 0.0 ) - { -/* Recur backwards from a larger value of n - */ - if( y > 1.3 * an ) - goto recurdwn; - if( an > 1.3 * y ) - goto recurdwn; - k = n; - y = 2.0*(y+an+1.0); - if( (y - n) > 33.0 ) - y = n + 33.0; - y = n + floorf(y-n); - q = recurf( &y, x, &k ); - y = jvsf(y,x) * q; - goto done; - } -recurdwn: - if( an > (k + 3.0) ) - { -/* Recur backwards from n to k - */ - if( n < 0.0 ) - k = -k; - q = n - floorf(n); - k = floorf(k) + q; - if( n > 0.0 ) - q = recurf( &n, x, &k ); - else - { - t = k; - k = n; - q = recurf( &t, x, &k ); - k = t; - } - if( q == 0.0 ) - { -underf: - y = 0.0; - goto done; - } - } - else - { - k = n; - q = 1.0; - } - -/* boundary between convergence of - * power series and Hankel expansion - */ - t = fabsf(k); - if( t < 26.0 ) - t = (0.0083*t + 0.09)*t + 12.9; - else - t = 0.9 * t; - - if( y > t ) /* y = |x| */ - y = hankelf(k,x); - else - y = jvsf(k,x); -#if DEBUG -printf( "y = %.16e, q = %.16e\n", y, q ); -#endif - if( n > 0.0 ) - y /= q; - else - y *= q; - } - -else - { -/* For large positive n, use the uniform expansion - * or the transitional expansion. - * But if x is of the order of n**2, - * these may blow up, whereas the - * Hankel expansion will then work. - */ - if( n < 0.0 ) - { - mtherr( "jvf", TLOSS ); - y = 0.0; - goto done; - } - t = y/an; - t /= an; - if( t > 0.3 ) - y = hankelf(n,x); - else - y = jnxf(n,x); - } - -done: return( sign * y); -} - -/* Reduce the order by backward recurrence. - * AMS55 #9.1.27 and 9.1.73. - */ - -static float recurf( float *n, float xx, float *newn ) -{ -float x, pkm2, pkm1, pk, pkp1, qkm2, qkm1; -float k, ans, qk, xk, yk, r, t, kf, xinv; -static float big = BIG; -int nflag, ctr; - -x = xx; -/* continued fraction for Jn(x)/Jn-1(x) */ -if( *n < 0.0 ) - nflag = 1; -else - nflag = 0; - -fstart: - -#if DEBUG -printf( "n = %.6e, newn = %.6e, cfrac = ", *n, *newn ); -#endif - -pkm2 = 0.0; -qkm2 = 1.0; -pkm1 = x; -qkm1 = *n + *n; -xk = -x * x; -yk = qkm1; -ans = 1.0; -ctr = 0; -do - { - yk += 2.0; - pk = pkm1 * yk + pkm2 * xk; - qk = qkm1 * yk + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - if( qk != 0 ) - r = pk/qk; - else - r = 0.0; - if( r != 0 ) - { - t = fabsf( (ans - r)/r ); - ans = r; - } - else - t = 1.0; - - if( t < MACHEPF ) - goto done; - - if( fabsf(pk) > big ) - { - pkm2 *= MACHEPF; - pkm1 *= MACHEPF; - qkm2 *= MACHEPF; - qkm1 *= MACHEPF; - } - } -while( t > MACHEPF ); - -done: - -#if DEBUG -printf( "%.6e\n", ans ); -#endif - -/* Change n to n-1 if n < 0 and the continued fraction is small - */ -if( nflag > 0 ) - { - if( fabsf(ans) < 0.125 ) - { - nflag = -1; - *n = *n - 1.0; - goto fstart; - } - } - - -kf = *newn; - -/* backward recurrence - * 2k - * J (x) = --- J (x) - J (x) - * k-1 x k k+1 - */ - -pk = 1.0; -pkm1 = 1.0/ans; -k = *n - 1.0; -r = 2 * k; -xinv = 1.0/x; -do - { - pkm2 = (pkm1 * r - pk * x) * xinv; - pkp1 = pk; - pk = pkm1; - pkm1 = pkm2; - r -= 2.0; -#if 0 - t = fabsf(pkp1) + fabsf(pk); - if( (k > (kf + 2.5)) && (fabsf(pkm1) < 0.25*t) ) - { - k -= 1.0; - t = x*x; - pkm2 = ( (r*(r+2.0)-t)*pk - r*x*pkp1 )/t; - pkp1 = pk; - pk = pkm1; - pkm1 = pkm2; - r -= 2.0; - } -#endif - k -= 1.0; - } -while( k > (kf + 0.5) ); - -#if 0 -/* Take the larger of the last two iterates - * on the theory that it may have less cancellation error. - */ -if( (kf >= 0.0) && (fabsf(pk) > fabsf(pkm1)) ) - { - k += 1.0; - pkm2 = pk; - } -#endif - -*newn = k; -#if DEBUG -printf( "newn %.6e\n", k ); -#endif -return( pkm2 ); -} - - - -/* Ascending power series for Jv(x). - * AMS55 #9.1.10. - */ - -static float jvsf( float nn, float xx ) -{ -float n, x, t, u, y, z, k, ay; - -#if DEBUG -printf( "jvsf: " ); -#endif -n = nn; -x = xx; -z = -0.25 * x * x; -u = 1.0; -y = u; -k = 1.0; -t = 1.0; - -while( t > MACHEPF ) - { - u *= z / (k * (n+k)); - y += u; - k += 1.0; - t = fabsf(u); - if( (ay = fabsf(y)) > 1.0 ) - t /= ay; - } - -if( x < 0.0 ) - { - y = y * powf( 0.5 * x, n ) / gammaf( n + 1.0 ); - } -else - { - t = n * logf(0.5*x) - lgamf(n + 1.0); - if( t < -MAXLOGF ) - { - return( 0.0 ); - } - if( t > MAXLOGF ) - { - t = logf(y) + t; - if( t > MAXLOGF ) - { - mtherr( "jvf", OVERFLOW ); - return( MAXNUMF ); - } - else - { - y = sgngamf * expf(t); - return(y); - } - } - y = sgngamf * y * expf( t ); - } -#if DEBUG -printf( "y = %.8e\n", y ); -#endif -return(y); -} - -/* Hankel's asymptotic expansion - * for large x. - * AMS55 #9.2.5. - */ -static float hankelf( float nn, float xx ) -{ -float n, x, t, u, z, k, sign, conv; -float p, q, j, m, pp, qq; -int flag; - -#if DEBUG -printf( "hankelf: " ); -#endif -n = nn; -x = xx; -m = 4.0*n*n; -j = 1.0; -z = 8.0 * x; -k = 1.0; -p = 1.0; -u = (m - 1.0)/z; -q = u; -sign = 1.0; -conv = 1.0; -flag = 0; -t = 1.0; -pp = 1.0e38; -qq = 1.0e38; - -while( t > MACHEPF ) - { - k += 2.0; - j += 1.0; - sign = -sign; - u *= (m - k * k)/(j * z); - p += sign * u; - k += 2.0; - j += 1.0; - u *= (m - k * k)/(j * z); - q += sign * u; - t = fabsf(u/p); - if( t < conv ) - { - conv = t; - qq = q; - pp = p; - flag = 1; - } -/* stop if the terms start getting larger */ - if( (flag != 0) && (t > conv) ) - { -#if DEBUG - printf( "Hankel: convergence to %.4E\n", conv ); -#endif - goto hank1; - } - } - -hank1: -u = x - (0.5*n + 0.25) * PIF; -t = sqrtf( 2.0/(PIF*x) ) * ( pp * cosf(u) - qq * sinf(u) ); -return( t ); -} - - -/* Asymptotic expansion for large n. - * AMS55 #9.3.35. - */ - -static float lambda[] = { - 1.0, - 1.041666666666666666666667E-1, - 8.355034722222222222222222E-2, - 1.282265745563271604938272E-1, - 2.918490264641404642489712E-1, - 8.816272674437576524187671E-1, - 3.321408281862767544702647E+0, - 1.499576298686255465867237E+1, - 7.892301301158651813848139E+1, - 4.744515388682643231611949E+2, - 3.207490090890661934704328E+3 -}; -static float mu[] = { - 1.0, - -1.458333333333333333333333E-1, - -9.874131944444444444444444E-2, - -1.433120539158950617283951E-1, - -3.172272026784135480967078E-1, - -9.424291479571202491373028E-1, - -3.511203040826354261542798E+0, - -1.572726362036804512982712E+1, - -8.228143909718594444224656E+1, - -4.923553705236705240352022E+2, - -3.316218568547972508762102E+3 -}; -static float P1[] = { - -2.083333333333333333333333E-1, - 1.250000000000000000000000E-1 -}; -static float P2[] = { - 3.342013888888888888888889E-1, - -4.010416666666666666666667E-1, - 7.031250000000000000000000E-2 -}; -static float P3[] = { - -1.025812596450617283950617E+0, - 1.846462673611111111111111E+0, - -8.912109375000000000000000E-1, - 7.324218750000000000000000E-2 -}; -static float P4[] = { - 4.669584423426247427983539E+0, - -1.120700261622299382716049E+1, - 8.789123535156250000000000E+0, - -2.364086914062500000000000E+0, - 1.121520996093750000000000E-1 -}; -static float P5[] = { - -2.8212072558200244877E1, - 8.4636217674600734632E1, - -9.1818241543240017361E1, - 4.2534998745388454861E1, - -7.3687943594796316964E0, - 2.27108001708984375E-1 -}; -static float P6[] = { - 2.1257013003921712286E2, - -7.6525246814118164230E2, - 1.0599904525279998779E3, - -6.9957962737613254123E2, - 2.1819051174421159048E2, - -2.6491430486951555525E1, - 5.7250142097473144531E-1 -}; -static float P7[] = { - -1.9194576623184069963E3, - 8.0617221817373093845E3, - -1.3586550006434137439E4, - 1.1655393336864533248E4, - -5.3056469786134031084E3, - 1.2009029132163524628E3, - -1.0809091978839465550E2, - 1.7277275025844573975E0 -}; - - -static float jnxf( float nn, float xx ) -{ -float n, x, zeta, sqz, zz, zp, np; -float cbn, n23, t, z, sz; -float pp, qq, z32i, zzi; -float ak, bk, akl, bkl; -int sign, doa, dob, nflg, k, s, tk, tkp1, m; -static float u[8]; -static float ai, aip, bi, bip; - -n = nn; -x = xx; -/* Test for x very close to n. - * Use expansion for transition region if so. - */ -cbn = cbrtf(n); -z = (x - n)/cbn; -if( (fabsf(z) <= 0.7) || (n < 0.0) ) - return( jntf(n,x) ); -z = x/n; -zz = 1.0 - z*z; -if( zz == 0.0 ) - return(0.0); - -if( zz > 0.0 ) - { - sz = sqrtf( zz ); - t = 1.5 * (logf( (1.0+sz)/z ) - sz ); /* zeta ** 3/2 */ - zeta = cbrtf( t * t ); - nflg = 1; - } -else - { - sz = sqrtf(-zz); - t = 1.5 * (sz - acosf(1.0/z)); - zeta = -cbrtf( t * t ); - nflg = -1; - } -z32i = fabsf(1.0/t); -sqz = cbrtf(t); - -/* Airy function */ -n23 = cbrtf( n * n ); -t = n23 * zeta; - -#if DEBUG -printf("zeta %.5E, Airyf(%.5E)\n", zeta, t ); -#endif -airyf( t, &ai, &aip, &bi, &bip ); - -/* polynomials in expansion */ -u[0] = 1.0; -zzi = 1.0/zz; -u[1] = polevlf( zzi, P1, 1 )/sz; -u[2] = polevlf( zzi, P2, 2 )/zz; -u[3] = polevlf( zzi, P3, 3 )/(sz*zz); -pp = zz*zz; -u[4] = polevlf( zzi, P4, 4 )/pp; -u[5] = polevlf( zzi, P5, 5 )/(pp*sz); -pp *= zz; -u[6] = polevlf( zzi, P6, 6 )/pp; -u[7] = polevlf( zzi, P7, 7 )/(pp*sz); - -#if DEBUG -for( k=0; k<=7; k++ ) - printf( "u[%d] = %.5E\n", k, u[k] ); -#endif - -pp = 0.0; -qq = 0.0; -np = 1.0; -/* flags to stop when terms get larger */ -doa = 1; -dob = 1; -akl = MAXNUMF; -bkl = MAXNUMF; - -for( k=0; k<=3; k++ ) - { - tk = 2 * k; - tkp1 = tk + 1; - zp = 1.0; - ak = 0.0; - bk = 0.0; - for( s=0; s<=tk; s++ ) - { - if( doa ) - { - if( (s & 3) > 1 ) - sign = nflg; - else - sign = 1; - ak += sign * mu[s] * zp * u[tk-s]; - } - - if( dob ) - { - m = tkp1 - s; - if( ((m+1) & 3) > 1 ) - sign = nflg; - else - sign = 1; - bk += sign * lambda[s] * zp * u[m]; - } - zp *= z32i; - } - - if( doa ) - { - ak *= np; - t = fabsf(ak); - if( t < akl ) - { - akl = t; - pp += ak; - } - else - doa = 0; - } - - if( dob ) - { - bk += lambda[tkp1] * zp * u[0]; - bk *= -np/sqz; - t = fabsf(bk); - if( t < bkl ) - { - bkl = t; - qq += bk; - } - else - dob = 0; - } -#if DEBUG - printf("a[%d] %.5E, b[%d] %.5E\n", k, ak, k, bk ); -#endif - if( np < MACHEPF ) - break; - np /= n*n; - } - -/* normalizing factor ( 4*zeta/(1 - z**2) )**1/4 */ -t = 4.0 * zeta/zz; -t = sqrtf( sqrtf(t) ); - -t *= ai*pp/cbrtf(n) + aip*qq/(n23*n); -return(t); -} - -/* Asymptotic expansion for transition region, - * n large and x close to n. - * AMS55 #9.3.23. - */ - -static float PF2[] = { - -9.0000000000000000000e-2, - 8.5714285714285714286e-2 -}; -static float PF3[] = { - 1.3671428571428571429e-1, - -5.4920634920634920635e-2, - -4.4444444444444444444e-3 -}; -static float PF4[] = { - 1.3500000000000000000e-3, - -1.6036054421768707483e-1, - 4.2590187590187590188e-2, - 2.7330447330447330447e-3 -}; -static float PG1[] = { - -2.4285714285714285714e-1, - 1.4285714285714285714e-2 -}; -static float PG2[] = { - -9.0000000000000000000e-3, - 1.9396825396825396825e-1, - -1.1746031746031746032e-2 -}; -static float PG3[] = { - 1.9607142857142857143e-2, - -1.5983694083694083694e-1, - 6.3838383838383838384e-3 -}; - - -static float jntf( float nn, float xx ) -{ -float n, x, z, zz, z3; -float cbn, n23, cbtwo; -float ai, aip, bi, bip; /* Airy functions */ -float nk, fk, gk, pp, qq; -float F[5], G[4]; -int k; - -n = nn; -x = xx; -cbn = cbrtf(n); -z = (x - n)/cbn; -cbtwo = cbrtf( 2.0 ); - -/* Airy function */ -zz = -cbtwo * z; -airyf( zz, &ai, &aip, &bi, &bip ); - -/* polynomials in expansion */ -zz = z * z; -z3 = zz * z; -F[0] = 1.0; -F[1] = -z/5.0; -F[2] = polevlf( z3, PF2, 1 ) * zz; -F[3] = polevlf( z3, PF3, 2 ); -F[4] = polevlf( z3, PF4, 3 ) * z; -G[0] = 0.3 * zz; -G[1] = polevlf( z3, PG1, 1 ); -G[2] = polevlf( z3, PG2, 2 ) * z; -G[3] = polevlf( z3, PG3, 2 ) * zz; -#if DEBUG -for( k=0; k<=4; k++ ) - printf( "F[%d] = %.5E\n", k, F[k] ); -for( k=0; k<=3; k++ ) - printf( "G[%d] = %.5E\n", k, G[k] ); -#endif -pp = 0.0; -qq = 0.0; -nk = 1.0; -n23 = cbrtf( n * n ); - -for( k=0; k<=4; k++ ) - { - fk = F[k]*nk; - pp += fk; - if( k != 4 ) - { - gk = G[k]*nk; - qq += gk; - } -#if DEBUG - printf("fk[%d] %.5E, gk[%d] %.5E\n", k, fk, k, gk ); -#endif - nk /= n23; - } - -fk = cbtwo * ai * pp/cbn + cbrtf(4.0) * aip * qq/n; -return(fk); -} |