diff options
Diffstat (limited to 'libm/float/j0f.c')
-rw-r--r-- | libm/float/j0f.c | 228 |
1 files changed, 228 insertions, 0 deletions
diff --git a/libm/float/j0f.c b/libm/float/j0f.c new file mode 100644 index 000000000..2b0d4a5a4 --- /dev/null +++ b/libm/float/j0f.c @@ -0,0 +1,228 @@ +/* j0f.c + * + * Bessel function of order zero + * + * + * + * SYNOPSIS: + * + * float x, y, j0f(); + * + * y = j0f( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of order zero of the argument. + * + * The domain is divided into the intervals [0, 2] and + * (2, infinity). In the first interval the following polynomial + * approximation is used: + * + * + * 2 2 2 + * (w - r ) (w - r ) (w - r ) P(w) + * 1 2 3 + * + * 2 + * where w = x and the three r's are zeros of the function. + * + * In the second interval, the modulus and phase are approximated + * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) + * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is + * + * j0(x) = Modulus(x) cos( Phase(x) ). + * + * + * + * ACCURACY: + * + * Absolute error: + * arithmetic domain # trials peak rms + * IEEE 0, 2 100000 1.3e-7 3.6e-8 + * IEEE 2, 32 100000 1.9e-7 5.4e-8 + * + */ +/* y0f.c + * + * Bessel function of the second kind, order zero + * + * + * + * SYNOPSIS: + * + * float x, y, y0f(); + * + * y = y0f( x ); + * + * + * + * DESCRIPTION: + * + * Returns Bessel function of the second kind, of order + * zero, of the argument. + * + * The domain is divided into the intervals [0, 2] and + * (2, infinity). In the first interval a rational approximation + * R(x) is employed to compute + * + * 2 2 2 + * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x). + * 1 2 3 + * + * Thus a call to j0() is required. The three zeros are removed + * from R(x) to improve its numerical stability. + * + * In the second interval, the modulus and phase are approximated + * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) + * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is + * + * y0(x) = Modulus(x) sin( Phase(x) ). + * + * + * + * + * ACCURACY: + * + * Absolute error, when y0(x) < 1; else relative error: + * + * arithmetic domain # trials peak rms + * IEEE 0, 2 100000 2.4e-7 3.4e-8 + * IEEE 2, 32 100000 1.8e-7 5.3e-8 + * + */ + +/* +Cephes Math Library Release 2.2: June, 1992 +Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + + +#include <math.h> + +static float MO[8] = { +-6.838999669318810E-002f, + 1.864949361379502E-001f, +-2.145007480346739E-001f, + 1.197549369473540E-001f, +-3.560281861530129E-003f, +-4.969382655296620E-002f, +-3.355424622293709E-006f, + 7.978845717621440E-001f +}; + +static float PH[8] = { + 3.242077816988247E+001f, +-3.630592630518434E+001f, + 1.756221482109099E+001f, +-4.974978466280903E+000f, + 1.001973420681837E+000f, +-1.939906941791308E-001f, + 6.490598792654666E-002f, +-1.249992184872738E-001f +}; + +static float YP[5] = { + 9.454583683980369E-008f, +-9.413212653797057E-006f, + 5.344486707214273E-004f, +-1.584289289821316E-002f, + 1.707584643733568E-001f +}; + +float YZ1 = 0.43221455686510834878f; +float YZ2 = 22.401876406482861405f; +float YZ3 = 64.130620282338755553f; + +static float DR1 = 5.78318596294678452118f; +/* +static float DR2 = 30.4712623436620863991; +static float DR3 = 74.887006790695183444889; +*/ + +static float JP[5] = { +-6.068350350393235E-008f, + 6.388945720783375E-006f, +-3.969646342510940E-004f, + 1.332913422519003E-002f, +-1.729150680240724E-001f +}; +extern float PIO4F; + + +float polevlf(float, float *, int); +float logf(float), sinf(float), cosf(float), sqrtf(float); + +float j0f( float xx ) +{ +float x, w, z, p, q, xn; + + +if( xx < 0 ) + x = -xx; +else + x = xx; + +if( x <= 2.0f ) + { + z = x * x; + if( x < 1.0e-3f ) + return( 1.0f - 0.25f*z ); + + p = (z-DR1) * polevlf( z, JP, 4); + return( p ); + } + +q = 1.0f/x; +w = sqrtf(q); + +p = w * polevlf( q, MO, 7); +w = q*q; +xn = q * polevlf( w, PH, 7) - PIO4F; +p = p * cosf(xn + x); +return(p); +} + +/* y0() 2 */ +/* Bessel function of second kind, order zero */ + +/* Rational approximation coefficients YP[] are used for x < 6.5. + * The function computed is y0(x) - 2 ln(x) j0(x) / pi, + * whose value at x = 0 is 2 * ( log(0.5) + EUL ) / pi + * = 0.073804295108687225 , EUL is Euler's constant. + */ + +static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */ +extern float MAXNUMF; + +float y0f( float xx ) +{ +float x, w, z, p, q, xn; + + +x = xx; +if( x <= 2.0f ) + { + if( x <= 0.0f ) + { + mtherr( "y0f", DOMAIN ); + return( -MAXNUMF ); + } + z = x * x; +/* w = (z-YZ1)*(z-YZ2)*(z-YZ3) * polevlf( z, YP, 4);*/ + w = (z-YZ1) * polevlf( z, YP, 4); + w += TWOOPI * logf(x) * j0f(x); + return( w ); + } + +q = 1.0f/x; +w = sqrtf(q); + +p = w * polevlf( q, MO, 7); +w = q*q; +xn = q * polevlf( w, PH, 7) - PIO4F; +p = p * sinf(xn + x); +return( p ); +} |