diff options
Diffstat (limited to 'libm/float/j0f.c')
-rw-r--r-- | libm/float/j0f.c | 228 |
1 files changed, 0 insertions, 228 deletions
diff --git a/libm/float/j0f.c b/libm/float/j0f.c deleted file mode 100644 index 2b0d4a5a4..000000000 --- a/libm/float/j0f.c +++ /dev/null @@ -1,228 +0,0 @@ -/* j0f.c - * - * Bessel function of order zero - * - * - * - * SYNOPSIS: - * - * float x, y, j0f(); - * - * y = j0f( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of order zero of the argument. - * - * The domain is divided into the intervals [0, 2] and - * (2, infinity). In the first interval the following polynomial - * approximation is used: - * - * - * 2 2 2 - * (w - r ) (w - r ) (w - r ) P(w) - * 1 2 3 - * - * 2 - * where w = x and the three r's are zeros of the function. - * - * In the second interval, the modulus and phase are approximated - * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) - * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is - * - * j0(x) = Modulus(x) cos( Phase(x) ). - * - * - * - * ACCURACY: - * - * Absolute error: - * arithmetic domain # trials peak rms - * IEEE 0, 2 100000 1.3e-7 3.6e-8 - * IEEE 2, 32 100000 1.9e-7 5.4e-8 - * - */ -/* y0f.c - * - * Bessel function of the second kind, order zero - * - * - * - * SYNOPSIS: - * - * float x, y, y0f(); - * - * y = y0f( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of the second kind, of order - * zero, of the argument. - * - * The domain is divided into the intervals [0, 2] and - * (2, infinity). In the first interval a rational approximation - * R(x) is employed to compute - * - * 2 2 2 - * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x). - * 1 2 3 - * - * Thus a call to j0() is required. The three zeros are removed - * from R(x) to improve its numerical stability. - * - * In the second interval, the modulus and phase are approximated - * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) - * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is - * - * y0(x) = Modulus(x) sin( Phase(x) ). - * - * - * - * - * ACCURACY: - * - * Absolute error, when y0(x) < 1; else relative error: - * - * arithmetic domain # trials peak rms - * IEEE 0, 2 100000 2.4e-7 3.4e-8 - * IEEE 2, 32 100000 1.8e-7 5.3e-8 - * - */ - -/* -Cephes Math Library Release 2.2: June, 1992 -Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - - -#include <math.h> - -static float MO[8] = { --6.838999669318810E-002f, - 1.864949361379502E-001f, --2.145007480346739E-001f, - 1.197549369473540E-001f, --3.560281861530129E-003f, --4.969382655296620E-002f, --3.355424622293709E-006f, - 7.978845717621440E-001f -}; - -static float PH[8] = { - 3.242077816988247E+001f, --3.630592630518434E+001f, - 1.756221482109099E+001f, --4.974978466280903E+000f, - 1.001973420681837E+000f, --1.939906941791308E-001f, - 6.490598792654666E-002f, --1.249992184872738E-001f -}; - -static float YP[5] = { - 9.454583683980369E-008f, --9.413212653797057E-006f, - 5.344486707214273E-004f, --1.584289289821316E-002f, - 1.707584643733568E-001f -}; - -float YZ1 = 0.43221455686510834878f; -float YZ2 = 22.401876406482861405f; -float YZ3 = 64.130620282338755553f; - -static float DR1 = 5.78318596294678452118f; -/* -static float DR2 = 30.4712623436620863991; -static float DR3 = 74.887006790695183444889; -*/ - -static float JP[5] = { --6.068350350393235E-008f, - 6.388945720783375E-006f, --3.969646342510940E-004f, - 1.332913422519003E-002f, --1.729150680240724E-001f -}; -extern float PIO4F; - - -float polevlf(float, float *, int); -float logf(float), sinf(float), cosf(float), sqrtf(float); - -float j0f( float xx ) -{ -float x, w, z, p, q, xn; - - -if( xx < 0 ) - x = -xx; -else - x = xx; - -if( x <= 2.0f ) - { - z = x * x; - if( x < 1.0e-3f ) - return( 1.0f - 0.25f*z ); - - p = (z-DR1) * polevlf( z, JP, 4); - return( p ); - } - -q = 1.0f/x; -w = sqrtf(q); - -p = w * polevlf( q, MO, 7); -w = q*q; -xn = q * polevlf( w, PH, 7) - PIO4F; -p = p * cosf(xn + x); -return(p); -} - -/* y0() 2 */ -/* Bessel function of second kind, order zero */ - -/* Rational approximation coefficients YP[] are used for x < 6.5. - * The function computed is y0(x) - 2 ln(x) j0(x) / pi, - * whose value at x = 0 is 2 * ( log(0.5) + EUL ) / pi - * = 0.073804295108687225 , EUL is Euler's constant. - */ - -static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */ -extern float MAXNUMF; - -float y0f( float xx ) -{ -float x, w, z, p, q, xn; - - -x = xx; -if( x <= 2.0f ) - { - if( x <= 0.0f ) - { - mtherr( "y0f", DOMAIN ); - return( -MAXNUMF ); - } - z = x * x; -/* w = (z-YZ1)*(z-YZ2)*(z-YZ3) * polevlf( z, YP, 4);*/ - w = (z-YZ1) * polevlf( z, YP, 4); - w += TWOOPI * logf(x) * j0f(x); - return( w ); - } - -q = 1.0f/x; -w = sqrtf(q); - -p = w * polevlf( q, MO, 7); -w = q*q; -xn = q * polevlf( w, PH, 7) - PIO4F; -p = p * sinf(xn + x); -return( p ); -} |