diff options
Diffstat (limited to 'libm/float/i0f.c')
-rw-r--r-- | libm/float/i0f.c | 160 |
1 files changed, 160 insertions, 0 deletions
diff --git a/libm/float/i0f.c b/libm/float/i0f.c new file mode 100644 index 000000000..bb62cf60a --- /dev/null +++ b/libm/float/i0f.c @@ -0,0 +1,160 @@ +/* i0f.c + * + * Modified Bessel function of order zero + * + * + * + * SYNOPSIS: + * + * float x, y, i0(); + * + * y = i0f( x ); + * + * + * + * DESCRIPTION: + * + * Returns modified Bessel function of order zero of the + * argument. + * + * The function is defined as i0(x) = j0( ix ). + * + * The range is partitioned into the two intervals [0,8] and + * (8, infinity). Chebyshev polynomial expansions are employed + * in each interval. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0,30 100000 4.0e-7 7.9e-8 + * + */ +/* i0ef.c + * + * Modified Bessel function of order zero, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * float x, y, i0ef(); + * + * y = i0ef( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of order zero of the argument. + * + * The function is defined as i0e(x) = exp(-|x|) j0( ix ). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0,30 100000 3.7e-7 7.0e-8 + * See i0f(). + * + */ + +/* i0.c */ + + +/* +Cephes Math Library Release 2.2: June, 1992 +Copyright 1984, 1987, 1992 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + +#include <math.h> + +/* Chebyshev coefficients for exp(-x) I0(x) + * in the interval [0,8]. + * + * lim(x->0){ exp(-x) I0(x) } = 1. + */ + +static float A[] = +{ +-1.30002500998624804212E-8f, + 6.04699502254191894932E-8f, +-2.67079385394061173391E-7f, + 1.11738753912010371815E-6f, +-4.41673835845875056359E-6f, + 1.64484480707288970893E-5f, +-5.75419501008210370398E-5f, + 1.88502885095841655729E-4f, +-5.76375574538582365885E-4f, + 1.63947561694133579842E-3f, +-4.32430999505057594430E-3f, + 1.05464603945949983183E-2f, +-2.37374148058994688156E-2f, + 4.93052842396707084878E-2f, +-9.49010970480476444210E-2f, + 1.71620901522208775349E-1f, +-3.04682672343198398683E-1f, + 6.76795274409476084995E-1f +}; + + +/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) + * in the inverted interval [8,infinity]. + * + * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). + */ + +static float B[] = +{ + 3.39623202570838634515E-9f, + 2.26666899049817806459E-8f, + 2.04891858946906374183E-7f, + 2.89137052083475648297E-6f, + 6.88975834691682398426E-5f, + 3.36911647825569408990E-3f, + 8.04490411014108831608E-1f +}; + + +float chbevlf(float, float *, int), expf(float), sqrtf(float); + +float i0f( float x ) +{ +float y; + +if( x < 0 ) + x = -x; +if( x <= 8.0f ) + { + y = 0.5f*x - 2.0f; + return( expf(x) * chbevlf( y, A, 18 ) ); + } + +return( expf(x) * chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) ); +} + + + +float chbevlf(float, float *, int), expf(float), sqrtf(float); + +float i0ef( float x ) +{ +float y; + +if( x < 0 ) + x = -x; +if( x <= 8.0f ) + { + y = 0.5f*x - 2.0f; + return( chbevlf( y, A, 18 ) ); + } + +return( chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) ); +} |