diff options
Diffstat (limited to 'libm/float/bdtrf.c')
-rw-r--r-- | libm/float/bdtrf.c | 247 |
1 files changed, 0 insertions, 247 deletions
diff --git a/libm/float/bdtrf.c b/libm/float/bdtrf.c deleted file mode 100644 index e063f1c77..000000000 --- a/libm/float/bdtrf.c +++ /dev/null @@ -1,247 +0,0 @@ -/* bdtrf.c - * - * Binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * float p, y, bdtrf(); - * - * y = bdtrf( k, n, p ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the terms 0 through k of the Binomial - * probability density: - * - * k - * -- ( n ) j n-j - * > ( ) p (1-p) - * -- ( j ) - * j=0 - * - * The terms are not summed directly; instead the incomplete - * beta integral is employed, according to the formula - * - * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * - * - * ACCURACY: - * - * Relative error (p varies from 0 to 1): - * arithmetic domain # trials peak rms - * IEEE 0,100 2000 6.9e-5 1.1e-5 - * - * ERROR MESSAGES: - * - * message condition value returned - * bdtrf domain k < 0 0.0 - * n < k - * x < 0, x > 1 - * - */ -/* bdtrcf() - * - * Complemented binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * float p, y, bdtrcf(); - * - * y = bdtrcf( k, n, p ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the terms k+1 through n of the Binomial - * probability density: - * - * n - * -- ( n ) j n-j - * > ( ) p (1-p) - * -- ( j ) - * j=k+1 - * - * The terms are not summed directly; instead the incomplete - * beta integral is employed, according to the formula - * - * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * - * - * ACCURACY: - * - * Relative error (p varies from 0 to 1): - * arithmetic domain # trials peak rms - * IEEE 0,100 2000 6.0e-5 1.2e-5 - * - * ERROR MESSAGES: - * - * message condition value returned - * bdtrcf domain x<0, x>1, n<k 0.0 - */ -/* bdtrif() - * - * Inverse binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * float p, y, bdtrif(); - * - * p = bdtrf( k, n, y ); - * - * - * - * DESCRIPTION: - * - * Finds the event probability p such that the sum of the - * terms 0 through k of the Binomial probability density - * is equal to the given cumulative probability y. - * - * This is accomplished using the inverse beta integral - * function and the relation - * - * 1 - p = incbi( n-k, k+1, y ). - * - * - * - * - * ACCURACY: - * - * Relative error (p varies from 0 to 1): - * arithmetic domain # trials peak rms - * IEEE 0,100 2000 3.5e-5 3.3e-6 - * - * ERROR MESSAGES: - * - * message condition value returned - * bdtrif domain k < 0, n <= k 0.0 - * x < 0, x > 1 - * - */ - -/* bdtr() */ - - -/* -Cephes Math Library Release 2.2: July, 1992 -Copyright 1984, 1987, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - -#include <math.h> - -#ifdef ANSIC -float incbetf(float, float, float), powf(float, float); -float incbif( float, float, float ); -#else -float incbetf(), powf(), incbif(); -#endif - -float bdtrcf( int k, int n, float pp ) -{ -float p, dk, dn; - -p = pp; -if( (p < 0.0) || (p > 1.0) ) - goto domerr; -if( k < 0 ) - return( 1.0 ); - -if( n < k ) - { -domerr: - mtherr( "bdtrcf", DOMAIN ); - return( 0.0 ); - } - -if( k == n ) - return( 0.0 ); -dn = n - k; -if( k == 0 ) - { - dk = 1.0 - powf( 1.0-p, dn ); - } -else - { - dk = k + 1; - dk = incbetf( dk, dn, p ); - } -return( dk ); -} - - - -float bdtrf( int k, int n, float pp ) -{ -float p, dk, dn; - -p = pp; -if( (p < 0.0) || (p > 1.0) ) - goto domerr; -if( (k < 0) || (n < k) ) - { -domerr: - mtherr( "bdtrf", DOMAIN ); - return( 0.0 ); - } - -if( k == n ) - return( 1.0 ); - -dn = n - k; -if( k == 0 ) - { - dk = powf( 1.0-p, dn ); - } -else - { - dk = k + 1; - dk = incbetf( dn, dk, 1.0 - p ); - } -return( dk ); -} - - -float bdtrif( int k, int n, float yy ) -{ -float y, dk, dn, p; - -y = yy; -if( (y < 0.0) || (y > 1.0) ) - goto domerr; -if( (k < 0) || (n <= k) ) - { -domerr: - mtherr( "bdtrif", DOMAIN ); - return( 0.0 ); - } - -dn = n - k; -if( k == 0 ) - { - p = 1.0 - powf( y, 1.0/dn ); - } -else - { - dk = k + 1; - p = 1.0 - incbif( dn, dk, y ); - } -return( p ); -} |