diff options
Diffstat (limited to 'libm/float/bdtrf.c')
-rw-r--r-- | libm/float/bdtrf.c | 247 |
1 files changed, 247 insertions, 0 deletions
diff --git a/libm/float/bdtrf.c b/libm/float/bdtrf.c new file mode 100644 index 000000000..e063f1c77 --- /dev/null +++ b/libm/float/bdtrf.c @@ -0,0 +1,247 @@ +/* bdtrf.c + * + * Binomial distribution + * + * + * + * SYNOPSIS: + * + * int k, n; + * float p, y, bdtrf(); + * + * y = bdtrf( k, n, p ); + * + * + * + * DESCRIPTION: + * + * Returns the sum of the terms 0 through k of the Binomial + * probability density: + * + * k + * -- ( n ) j n-j + * > ( ) p (1-p) + * -- ( j ) + * j=0 + * + * The terms are not summed directly; instead the incomplete + * beta integral is employed, according to the formula + * + * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). + * + * The arguments must be positive, with p ranging from 0 to 1. + * + * + * + * ACCURACY: + * + * Relative error (p varies from 0 to 1): + * arithmetic domain # trials peak rms + * IEEE 0,100 2000 6.9e-5 1.1e-5 + * + * ERROR MESSAGES: + * + * message condition value returned + * bdtrf domain k < 0 0.0 + * n < k + * x < 0, x > 1 + * + */ +/* bdtrcf() + * + * Complemented binomial distribution + * + * + * + * SYNOPSIS: + * + * int k, n; + * float p, y, bdtrcf(); + * + * y = bdtrcf( k, n, p ); + * + * + * + * DESCRIPTION: + * + * Returns the sum of the terms k+1 through n of the Binomial + * probability density: + * + * n + * -- ( n ) j n-j + * > ( ) p (1-p) + * -- ( j ) + * j=k+1 + * + * The terms are not summed directly; instead the incomplete + * beta integral is employed, according to the formula + * + * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). + * + * The arguments must be positive, with p ranging from 0 to 1. + * + * + * + * ACCURACY: + * + * Relative error (p varies from 0 to 1): + * arithmetic domain # trials peak rms + * IEEE 0,100 2000 6.0e-5 1.2e-5 + * + * ERROR MESSAGES: + * + * message condition value returned + * bdtrcf domain x<0, x>1, n<k 0.0 + */ +/* bdtrif() + * + * Inverse binomial distribution + * + * + * + * SYNOPSIS: + * + * int k, n; + * float p, y, bdtrif(); + * + * p = bdtrf( k, n, y ); + * + * + * + * DESCRIPTION: + * + * Finds the event probability p such that the sum of the + * terms 0 through k of the Binomial probability density + * is equal to the given cumulative probability y. + * + * This is accomplished using the inverse beta integral + * function and the relation + * + * 1 - p = incbi( n-k, k+1, y ). + * + * + * + * + * ACCURACY: + * + * Relative error (p varies from 0 to 1): + * arithmetic domain # trials peak rms + * IEEE 0,100 2000 3.5e-5 3.3e-6 + * + * ERROR MESSAGES: + * + * message condition value returned + * bdtrif domain k < 0, n <= k 0.0 + * x < 0, x > 1 + * + */ + +/* bdtr() */ + + +/* +Cephes Math Library Release 2.2: July, 1992 +Copyright 1984, 1987, 1992 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + +#include <math.h> + +#ifdef ANSIC +float incbetf(float, float, float), powf(float, float); +float incbif( float, float, float ); +#else +float incbetf(), powf(), incbif(); +#endif + +float bdtrcf( int k, int n, float pp ) +{ +float p, dk, dn; + +p = pp; +if( (p < 0.0) || (p > 1.0) ) + goto domerr; +if( k < 0 ) + return( 1.0 ); + +if( n < k ) + { +domerr: + mtherr( "bdtrcf", DOMAIN ); + return( 0.0 ); + } + +if( k == n ) + return( 0.0 ); +dn = n - k; +if( k == 0 ) + { + dk = 1.0 - powf( 1.0-p, dn ); + } +else + { + dk = k + 1; + dk = incbetf( dk, dn, p ); + } +return( dk ); +} + + + +float bdtrf( int k, int n, float pp ) +{ +float p, dk, dn; + +p = pp; +if( (p < 0.0) || (p > 1.0) ) + goto domerr; +if( (k < 0) || (n < k) ) + { +domerr: + mtherr( "bdtrf", DOMAIN ); + return( 0.0 ); + } + +if( k == n ) + return( 1.0 ); + +dn = n - k; +if( k == 0 ) + { + dk = powf( 1.0-p, dn ); + } +else + { + dk = k + 1; + dk = incbetf( dn, dk, 1.0 - p ); + } +return( dk ); +} + + +float bdtrif( int k, int n, float yy ) +{ +float y, dk, dn, p; + +y = yy; +if( (y < 0.0) || (y > 1.0) ) + goto domerr; +if( (k < 0) || (n <= k) ) + { +domerr: + mtherr( "bdtrif", DOMAIN ); + return( 0.0 ); + } + +dn = n - k; +if( k == 0 ) + { + p = 1.0 - powf( y, 1.0/dn ); + } +else + { + dk = k + 1; + p = 1.0 - incbif( dn, dk, y ); + } +return( p ); +} |