summaryrefslogtreecommitdiff
path: root/libm/e_jn.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/e_jn.c')
-rw-r--r--libm/e_jn.c42
1 files changed, 21 insertions, 21 deletions
diff --git a/libm/e_jn.c b/libm/e_jn.c
index 870824cf8..857c4a3f5 100644
--- a/libm/e_jn.c
+++ b/libm/e_jn.c
@@ -5,7 +5,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -18,7 +18,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
- *
+ *
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
@@ -37,7 +37,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
- *
+ *
*/
#include "math.h"
@@ -76,7 +76,7 @@ static double zero = 0.00000000000000000000e+00;
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
- if(n<0){
+ if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
@@ -87,13 +87,13 @@ static double zero = 0.00000000000000000000e+00;
x = fabs(x);
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
b = zero;
- else if((double)n<=x) {
+ else if((double)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if(ix>=0x52D00000) { /* x > 2**302 */
- /* (x >> n**2)
+ /* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
+ * Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
@@ -110,7 +110,7 @@ static double zero = 0.00000000000000000000e+00;
case 3: temp = cos(x)-sin(x); break;
}
b = invsqrtpi*temp/sqrt(x);
- } else {
+ } else {
a = __ieee754_j0(x);
b = __ieee754_j1(x);
for(i=1;i<n;i++){
@@ -121,7 +121,7 @@ static double zero = 0.00000000000000000000e+00;
}
} else {
if(ix<0x3e100000) { /* x < 2**-29 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
+ /* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
@@ -136,14 +136,14 @@ static double zero = 0.00000000000000000000e+00;
}
} else {
/* use backward recurrence */
- /* x x^2 x^2
+ /* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
- * 1 1 1
+ * 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
+ * -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
@@ -159,9 +159,9 @@ static double zero = 0.00000000000000000000e+00;
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,v;
@@ -183,7 +183,7 @@ static double zero = 0.00000000000000000000e+00;
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
+ * then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
@@ -219,9 +219,9 @@ static double zero = 0.00000000000000000000e+00;
}
#ifdef __STDC__
- double __ieee754_yn(int n, double x)
+ double __ieee754_yn(int n, double x)
#else
- double __ieee754_yn(n,x)
+ double __ieee754_yn(n,x)
int n; double x;
#endif
{
@@ -244,10 +244,10 @@ static double zero = 0.00000000000000000000e+00;
if(n==1) return(sign*__ieee754_y1(x));
if(ix==0x7ff00000) return zero;
if(ix>=0x52D00000) { /* x > 2**302 */
- /* (x >> n**2)
+ /* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
+ * Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
@@ -270,7 +270,7 @@ static double zero = 0.00000000000000000000e+00;
b = __ieee754_y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(high,b);
- for(i=1;i<n&&high!=0xfff00000;i++){
+ for(i=1;i<n&&high!=0xfff00000;i++){
temp = b;
b = ((double)(i+i)/x)*b - a;
GET_HIGH_WORD(high,b);