diff options
Diffstat (limited to 'libm/double/nbdtr.c')
-rw-r--r-- | libm/double/nbdtr.c | 222 |
1 files changed, 0 insertions, 222 deletions
diff --git a/libm/double/nbdtr.c b/libm/double/nbdtr.c deleted file mode 100644 index 9930a4087..000000000 --- a/libm/double/nbdtr.c +++ /dev/null @@ -1,222 +0,0 @@ -/* nbdtr.c - * - * Negative binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * double p, y, nbdtr(); - * - * y = nbdtr( k, n, p ); - * - * DESCRIPTION: - * - * Returns the sum of the terms 0 through k of the negative - * binomial distribution: - * - * k - * -- ( n+j-1 ) n j - * > ( ) p (1-p) - * -- ( j ) - * j=0 - * - * In a sequence of Bernoulli trials, this is the probability - * that k or fewer failures precede the nth success. - * - * The terms are not computed individually; instead the incomplete - * beta integral is employed, according to the formula - * - * y = nbdtr( k, n, p ) = incbet( n, k+1, p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * ACCURACY: - * - * Tested at random points (a,b,p), with p between 0 and 1. - * - * a,b Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,100 100000 1.7e-13 8.8e-15 - * See also incbet.c. - * - */ -/* nbdtrc.c - * - * Complemented negative binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * double p, y, nbdtrc(); - * - * y = nbdtrc( k, n, p ); - * - * DESCRIPTION: - * - * Returns the sum of the terms k+1 to infinity of the negative - * binomial distribution: - * - * inf - * -- ( n+j-1 ) n j - * > ( ) p (1-p) - * -- ( j ) - * j=k+1 - * - * The terms are not computed individually; instead the incomplete - * beta integral is employed, according to the formula - * - * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * ACCURACY: - * - * Tested at random points (a,b,p), with p between 0 and 1. - * - * a,b Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,100 100000 1.7e-13 8.8e-15 - * See also incbet.c. - */ - -/* nbdtrc - * - * Complemented negative binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * double p, y, nbdtrc(); - * - * y = nbdtrc( k, n, p ); - * - * DESCRIPTION: - * - * Returns the sum of the terms k+1 to infinity of the negative - * binomial distribution: - * - * inf - * -- ( n+j-1 ) n j - * > ( ) p (1-p) - * -- ( j ) - * j=k+1 - * - * The terms are not computed individually; instead the incomplete - * beta integral is employed, according to the formula - * - * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * ACCURACY: - * - * See incbet.c. - */ -/* nbdtri - * - * Functional inverse of negative binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * double p, y, nbdtri(); - * - * p = nbdtri( k, n, y ); - * - * DESCRIPTION: - * - * Finds the argument p such that nbdtr(k,n,p) is equal to y. - * - * ACCURACY: - * - * Tested at random points (a,b,y), with y between 0 and 1. - * - * a,b Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,100 100000 1.5e-14 8.5e-16 - * See also incbi.c. - */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier -*/ - -#include <math.h> -#ifdef ANSIPROT -extern double incbet ( double, double, double ); -extern double incbi ( double, double, double ); -#else -double incbet(), incbi(); -#endif - -double nbdtrc( k, n, p ) -int k, n; -double p; -{ -double dk, dn; - -if( (p < 0.0) || (p > 1.0) ) - goto domerr; -if( k < 0 ) - { -domerr: - mtherr( "nbdtr", DOMAIN ); - return( 0.0 ); - } - -dk = k+1; -dn = n; -return( incbet( dk, dn, 1.0 - p ) ); -} - - - -double nbdtr( k, n, p ) -int k, n; -double p; -{ -double dk, dn; - -if( (p < 0.0) || (p > 1.0) ) - goto domerr; -if( k < 0 ) - { -domerr: - mtherr( "nbdtr", DOMAIN ); - return( 0.0 ); - } -dk = k+1; -dn = n; -return( incbet( dn, dk, p ) ); -} - - - -double nbdtri( k, n, p ) -int k, n; -double p; -{ -double dk, dn, w; - -if( (p < 0.0) || (p > 1.0) ) - goto domerr; -if( k < 0 ) - { -domerr: - mtherr( "nbdtri", DOMAIN ); - return( 0.0 ); - } -dk = k+1; -dn = n; -w = incbi( dn, dk, p ); -return( w ); -} |