diff options
Diffstat (limited to 'libm/double/incbi.c')
-rw-r--r-- | libm/double/incbi.c | 313 |
1 files changed, 0 insertions, 313 deletions
diff --git a/libm/double/incbi.c b/libm/double/incbi.c deleted file mode 100644 index 817219c4a..000000000 --- a/libm/double/incbi.c +++ /dev/null @@ -1,313 +0,0 @@ -/* incbi() - * - * Inverse of imcomplete beta integral - * - * - * - * SYNOPSIS: - * - * double a, b, x, y, incbi(); - * - * x = incbi( a, b, y ); - * - * - * - * DESCRIPTION: - * - * Given y, the function finds x such that - * - * incbet( a, b, x ) = y . - * - * The routine performs interval halving or Newton iterations to find the - * root of incbet(a,b,x) - y = 0. - * - * - * ACCURACY: - * - * Relative error: - * x a,b - * arithmetic domain domain # trials peak rms - * IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13 - * IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15 - * IEEE 0,1 0,5 50000 1.1e-12 5.5e-15 - * VAX 0,1 .5,100 25000 3.5e-14 1.1e-15 - * With a and b constrained to half-integer or integer values: - * IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13 - * IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16 - * With a = .5, b constrained to half-integer or integer values: - * IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11 - */ - - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1996, 2000 by Stephen L. Moshier -*/ - -#include <math.h> - -extern double MACHEP, MAXNUM, MAXLOG, MINLOG; -#ifdef ANSIPROT -extern double ndtri ( double ); -extern double exp ( double ); -extern double fabs ( double ); -extern double log ( double ); -extern double sqrt ( double ); -extern double lgam ( double ); -extern double incbet ( double, double, double ); -#else -double ndtri(), exp(), fabs(), log(), sqrt(), lgam(), incbet(); -#endif - -double incbi( aa, bb, yy0 ) -double aa, bb, yy0; -{ -double a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt; -int i, rflg, dir, nflg; - - -i = 0; -if( yy0 <= 0 ) - return(0.0); -if( yy0 >= 1.0 ) - return(1.0); -x0 = 0.0; -yl = 0.0; -x1 = 1.0; -yh = 1.0; -nflg = 0; - -if( aa <= 1.0 || bb <= 1.0 ) - { - dithresh = 1.0e-6; - rflg = 0; - a = aa; - b = bb; - y0 = yy0; - x = a/(a+b); - y = incbet( a, b, x ); - goto ihalve; - } -else - { - dithresh = 1.0e-4; - } -/* approximation to inverse function */ - -yp = -ndtri(yy0); - -if( yy0 > 0.5 ) - { - rflg = 1; - a = bb; - b = aa; - y0 = 1.0 - yy0; - yp = -yp; - } -else - { - rflg = 0; - a = aa; - b = bb; - y0 = yy0; - } - -lgm = (yp * yp - 3.0)/6.0; -x = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) ); -d = yp * sqrt( x + lgm ) / x - - ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) ) - * (lgm + 5.0/6.0 - 2.0/(3.0*x)); -d = 2.0 * d; -if( d < MINLOG ) - { - x = 1.0; - goto under; - } -x = a/( a + b * exp(d) ); -y = incbet( a, b, x ); -yp = (y - y0)/y0; -if( fabs(yp) < 0.2 ) - goto newt; - -/* Resort to interval halving if not close enough. */ -ihalve: - -dir = 0; -di = 0.5; -for( i=0; i<100; i++ ) - { - if( i != 0 ) - { - x = x0 + di * (x1 - x0); - if( x == 1.0 ) - x = 1.0 - MACHEP; - if( x == 0.0 ) - { - di = 0.5; - x = x0 + di * (x1 - x0); - if( x == 0.0 ) - goto under; - } - y = incbet( a, b, x ); - yp = (x1 - x0)/(x1 + x0); - if( fabs(yp) < dithresh ) - goto newt; - yp = (y-y0)/y0; - if( fabs(yp) < dithresh ) - goto newt; - } - if( y < y0 ) - { - x0 = x; - yl = y; - if( dir < 0 ) - { - dir = 0; - di = 0.5; - } - else if( dir > 3 ) - di = 1.0 - (1.0 - di) * (1.0 - di); - else if( dir > 1 ) - di = 0.5 * di + 0.5; - else - di = (y0 - y)/(yh - yl); - dir += 1; - if( x0 > 0.75 ) - { - if( rflg == 1 ) - { - rflg = 0; - a = aa; - b = bb; - y0 = yy0; - } - else - { - rflg = 1; - a = bb; - b = aa; - y0 = 1.0 - yy0; - } - x = 1.0 - x; - y = incbet( a, b, x ); - x0 = 0.0; - yl = 0.0; - x1 = 1.0; - yh = 1.0; - goto ihalve; - } - } - else - { - x1 = x; - if( rflg == 1 && x1 < MACHEP ) - { - x = 0.0; - goto done; - } - yh = y; - if( dir > 0 ) - { - dir = 0; - di = 0.5; - } - else if( dir < -3 ) - di = di * di; - else if( dir < -1 ) - di = 0.5 * di; - else - di = (y - y0)/(yh - yl); - dir -= 1; - } - } -mtherr( "incbi", PLOSS ); -if( x0 >= 1.0 ) - { - x = 1.0 - MACHEP; - goto done; - } -if( x <= 0.0 ) - { -under: - mtherr( "incbi", UNDERFLOW ); - x = 0.0; - goto done; - } - -newt: - -if( nflg ) - goto done; -nflg = 1; -lgm = lgam(a+b) - lgam(a) - lgam(b); - -for( i=0; i<8; i++ ) - { - /* Compute the function at this point. */ - if( i != 0 ) - y = incbet(a,b,x); - if( y < yl ) - { - x = x0; - y = yl; - } - else if( y > yh ) - { - x = x1; - y = yh; - } - else if( y < y0 ) - { - x0 = x; - yl = y; - } - else - { - x1 = x; - yh = y; - } - if( x == 1.0 || x == 0.0 ) - break; - /* Compute the derivative of the function at this point. */ - d = (a - 1.0) * log(x) + (b - 1.0) * log(1.0-x) + lgm; - if( d < MINLOG ) - goto done; - if( d > MAXLOG ) - break; - d = exp(d); - /* Compute the step to the next approximation of x. */ - d = (y - y0)/d; - xt = x - d; - if( xt <= x0 ) - { - y = (x - x0) / (x1 - x0); - xt = x0 + 0.5 * y * (x - x0); - if( xt <= 0.0 ) - break; - } - if( xt >= x1 ) - { - y = (x1 - x) / (x1 - x0); - xt = x1 - 0.5 * y * (x1 - x); - if( xt >= 1.0 ) - break; - } - x = xt; - if( fabs(d/x) < 128.0 * MACHEP ) - goto done; - } -/* Did not converge. */ -dithresh = 256.0 * MACHEP; -goto ihalve; - -done: - -if( rflg ) - { - if( x <= MACHEP ) - x = 1.0 - MACHEP; - else - x = 1.0 - x; - } -return( x ); -} |