diff options
Diffstat (limited to 'libm/double/gamma.c')
-rw-r--r-- | libm/double/gamma.c | 685 |
1 files changed, 0 insertions, 685 deletions
diff --git a/libm/double/gamma.c b/libm/double/gamma.c deleted file mode 100644 index 341b4e915..000000000 --- a/libm/double/gamma.c +++ /dev/null @@ -1,685 +0,0 @@ -/* gamma.c - * - * Gamma function - * - * - * - * SYNOPSIS: - * - * double x, y, gamma(); - * extern int sgngam; - * - * y = gamma( x ); - * - * - * - * DESCRIPTION: - * - * Returns gamma function of the argument. The result is - * correctly signed, and the sign (+1 or -1) is also - * returned in a global (extern) variable named sgngam. - * This variable is also filled in by the logarithmic gamma - * function lgam(). - * - * Arguments |x| <= 34 are reduced by recurrence and the function - * approximated by a rational function of degree 6/7 in the - * interval (2,3). Large arguments are handled by Stirling's - * formula. Large negative arguments are made positive using - * a reflection formula. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -34, 34 10000 1.3e-16 2.5e-17 - * IEEE -170,-33 20000 2.3e-15 3.3e-16 - * IEEE -33, 33 20000 9.4e-16 2.2e-16 - * IEEE 33, 171.6 20000 2.3e-15 3.2e-16 - * - * Error for arguments outside the test range will be larger - * owing to error amplification by the exponential function. - * - */ -/* lgam() - * - * Natural logarithm of gamma function - * - * - * - * SYNOPSIS: - * - * double x, y, lgam(); - * extern int sgngam; - * - * y = lgam( x ); - * - * - * - * DESCRIPTION: - * - * Returns the base e (2.718...) logarithm of the absolute - * value of the gamma function of the argument. - * The sign (+1 or -1) of the gamma function is returned in a - * global (extern) variable named sgngam. - * - * For arguments greater than 13, the logarithm of the gamma - * function is approximated by the logarithmic version of - * Stirling's formula using a polynomial approximation of - * degree 4. Arguments between -33 and +33 are reduced by - * recurrence to the interval [2,3] of a rational approximation. - * The cosecant reflection formula is employed for arguments - * less than -33. - * - * Arguments greater than MAXLGM return MAXNUM and an error - * message. MAXLGM = 2.035093e36 for DEC - * arithmetic or 2.556348e305 for IEEE arithmetic. - * - * - * - * ACCURACY: - * - * - * arithmetic domain # trials peak rms - * DEC 0, 3 7000 5.2e-17 1.3e-17 - * DEC 2.718, 2.035e36 5000 3.9e-17 9.9e-18 - * IEEE 0, 3 28000 5.4e-16 1.1e-16 - * IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17 - * The error criterion was relative when the function magnitude - * was greater than one but absolute when it was less than one. - * - * The following test used the relative error criterion, though - * at certain points the relative error could be much higher than - * indicated. - * IEEE -200, -4 10000 4.8e-16 1.3e-16 - * - */ - -/* gamma.c */ -/* gamma function */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier -*/ - - -#include <math.h> - -#ifdef UNK -static double P[] = { - 1.60119522476751861407E-4, - 1.19135147006586384913E-3, - 1.04213797561761569935E-2, - 4.76367800457137231464E-2, - 2.07448227648435975150E-1, - 4.94214826801497100753E-1, - 9.99999999999999996796E-1 -}; -static double Q[] = { --2.31581873324120129819E-5, - 5.39605580493303397842E-4, --4.45641913851797240494E-3, - 1.18139785222060435552E-2, - 3.58236398605498653373E-2, --2.34591795718243348568E-1, - 7.14304917030273074085E-2, - 1.00000000000000000320E0 -}; -#define MAXGAM 171.624376956302725 -static double LOGPI = 1.14472988584940017414; -#endif - -#ifdef DEC -static unsigned short P[] = { -0035047,0162701,0146301,0005234, -0035634,0023437,0032065,0176530, -0036452,0137157,0047330,0122574, -0037103,0017310,0143041,0017232, -0037524,0066516,0162563,0164605, -0037775,0004671,0146237,0014222, -0040200,0000000,0000000,0000000 -}; -static unsigned short Q[] = { -0134302,0041724,0020006,0116565, -0035415,0072121,0044251,0025634, -0136222,0003447,0035205,0121114, -0036501,0107552,0154335,0104271, -0037022,0135717,0014776,0171471, -0137560,0034324,0165024,0037021, -0037222,0045046,0047151,0161213, -0040200,0000000,0000000,0000000 -}; -#define MAXGAM 34.84425627277176174 -static unsigned short LPI[4] = { -0040222,0103202,0043475,0006750, -}; -#define LOGPI *(double *)LPI -#endif - -#ifdef IBMPC -static unsigned short P[] = { -0x2153,0x3998,0xfcb8,0x3f24, -0xbfab,0xe686,0x84e3,0x3f53, -0x14b0,0xe9db,0x57cd,0x3f85, -0x23d3,0x18c4,0x63d9,0x3fa8, -0x7d31,0xdcae,0x8da9,0x3fca, -0xe312,0x3993,0xa137,0x3fdf, -0x0000,0x0000,0x0000,0x3ff0 -}; -static unsigned short Q[] = { -0xd3af,0x8400,0x487a,0xbef8, -0x2573,0x2915,0xae8a,0x3f41, -0xb44a,0xe750,0x40e4,0xbf72, -0xb117,0x5b1b,0x31ed,0x3f88, -0xde67,0xe33f,0x5779,0x3fa2, -0x87c2,0x9d42,0x071a,0xbfce, -0x3c51,0xc9cd,0x4944,0x3fb2, -0x0000,0x0000,0x0000,0x3ff0 -}; -#define MAXGAM 171.624376956302725 -static unsigned short LPI[4] = { -0xa1bd,0x48e7,0x50d0,0x3ff2, -}; -#define LOGPI *(double *)LPI -#endif - -#ifdef MIEEE -static unsigned short P[] = { -0x3f24,0xfcb8,0x3998,0x2153, -0x3f53,0x84e3,0xe686,0xbfab, -0x3f85,0x57cd,0xe9db,0x14b0, -0x3fa8,0x63d9,0x18c4,0x23d3, -0x3fca,0x8da9,0xdcae,0x7d31, -0x3fdf,0xa137,0x3993,0xe312, -0x3ff0,0x0000,0x0000,0x0000 -}; -static unsigned short Q[] = { -0xbef8,0x487a,0x8400,0xd3af, -0x3f41,0xae8a,0x2915,0x2573, -0xbf72,0x40e4,0xe750,0xb44a, -0x3f88,0x31ed,0x5b1b,0xb117, -0x3fa2,0x5779,0xe33f,0xde67, -0xbfce,0x071a,0x9d42,0x87c2, -0x3fb2,0x4944,0xc9cd,0x3c51, -0x3ff0,0x0000,0x0000,0x0000 -}; -#define MAXGAM 171.624376956302725 -static unsigned short LPI[4] = { -0x3ff2,0x50d0,0x48e7,0xa1bd, -}; -#define LOGPI *(double *)LPI -#endif - -/* Stirling's formula for the gamma function */ -#if UNK -static double STIR[5] = { - 7.87311395793093628397E-4, --2.29549961613378126380E-4, --2.68132617805781232825E-3, - 3.47222221605458667310E-3, - 8.33333333333482257126E-2, -}; -#define MAXSTIR 143.01608 -static double SQTPI = 2.50662827463100050242E0; -#endif -#if DEC -static unsigned short STIR[20] = { -0035516,0061622,0144553,0112224, -0135160,0131531,0037460,0165740, -0136057,0134460,0037242,0077270, -0036143,0107070,0156306,0027751, -0037252,0125252,0125252,0146064, -}; -#define MAXSTIR 26.77 -static unsigned short SQT[4] = { -0040440,0066230,0177661,0034055, -}; -#define SQTPI *(double *)SQT -#endif -#if IBMPC -static unsigned short STIR[20] = { -0x7293,0x592d,0xcc72,0x3f49, -0x1d7c,0x27e6,0x166b,0xbf2e, -0x4fd7,0x07d4,0xf726,0xbf65, -0xc5fd,0x1b98,0x71c7,0x3f6c, -0x5986,0x5555,0x5555,0x3fb5, -}; -#define MAXSTIR 143.01608 -static unsigned short SQT[4] = { -0x2706,0x1ff6,0x0d93,0x4004, -}; -#define SQTPI *(double *)SQT -#endif -#if MIEEE -static unsigned short STIR[20] = { -0x3f49,0xcc72,0x592d,0x7293, -0xbf2e,0x166b,0x27e6,0x1d7c, -0xbf65,0xf726,0x07d4,0x4fd7, -0x3f6c,0x71c7,0x1b98,0xc5fd, -0x3fb5,0x5555,0x5555,0x5986, -}; -#define MAXSTIR 143.01608 -static unsigned short SQT[4] = { -0x4004,0x0d93,0x1ff6,0x2706, -}; -#define SQTPI *(double *)SQT -#endif - -int sgngam = 0; -extern int sgngam; -extern double MAXLOG, MAXNUM, PI; -#ifdef ANSIPROT -extern double pow ( double, double ); -extern double log ( double ); -extern double exp ( double ); -extern double sin ( double ); -extern double polevl ( double, void *, int ); -extern double p1evl ( double, void *, int ); -extern double floor ( double ); -extern double fabs ( double ); -extern int isnan ( double ); -extern int isfinite ( double ); -static double stirf ( double ); -double lgam ( double ); -#else -double pow(), log(), exp(), sin(), polevl(), p1evl(), floor(), fabs(); -int isnan(), isfinite(); -static double stirf(); -double lgam(); -#endif -#ifdef INFINITIES -extern double INFINITY; -#endif -#ifdef NANS -extern double NAN; -#endif - -/* Gamma function computed by Stirling's formula. - * The polynomial STIR is valid for 33 <= x <= 172. - */ -static double stirf(x) -double x; -{ -double y, w, v; - -w = 1.0/x; -w = 1.0 + w * polevl( w, STIR, 4 ); -y = exp(x); -if( x > MAXSTIR ) - { /* Avoid overflow in pow() */ - v = pow( x, 0.5 * x - 0.25 ); - y = v * (v / y); - } -else - { - y = pow( x, x - 0.5 ) / y; - } -y = SQTPI * y * w; -return( y ); -} - - - -double gamma(x) -double x; -{ -double p, q, z; -int i; - -sgngam = 1; -#ifdef NANS -if( isnan(x) ) - return(x); -#endif -#ifdef INFINITIES -#ifdef NANS -if( x == INFINITY ) - return(x); -if( x == -INFINITY ) - return(NAN); -#else -if( !isfinite(x) ) - return(x); -#endif -#endif -q = fabs(x); - -if( q > 33.0 ) - { - if( x < 0.0 ) - { - p = floor(q); - if( p == q ) - { -#ifdef NANS -gamnan: - mtherr( "gamma", DOMAIN ); - return (NAN); -#else - goto goverf; -#endif - } - i = p; - if( (i & 1) == 0 ) - sgngam = -1; - z = q - p; - if( z > 0.5 ) - { - p += 1.0; - z = q - p; - } - z = q * sin( PI * z ); - if( z == 0.0 ) - { -#ifdef INFINITIES - return( sgngam * INFINITY); -#else -goverf: - mtherr( "gamma", OVERFLOW ); - return( sgngam * MAXNUM); -#endif - } - z = fabs(z); - z = PI/(z * stirf(q) ); - } - else - { - z = stirf(x); - } - return( sgngam * z ); - } - -z = 1.0; -while( x >= 3.0 ) - { - x -= 1.0; - z *= x; - } - -while( x < 0.0 ) - { - if( x > -1.E-9 ) - goto small; - z /= x; - x += 1.0; - } - -while( x < 2.0 ) - { - if( x < 1.e-9 ) - goto small; - z /= x; - x += 1.0; - } - -if( x == 2.0 ) - return(z); - -x -= 2.0; -p = polevl( x, P, 6 ); -q = polevl( x, Q, 7 ); -return( z * p / q ); - -small: -if( x == 0.0 ) - { -#ifdef INFINITIES -#ifdef NANS - goto gamnan; -#else - return( INFINITY ); -#endif -#else - mtherr( "gamma", SING ); - return( MAXNUM ); -#endif - } -else - return( z/((1.0 + 0.5772156649015329 * x) * x) ); -} - - - -/* A[]: Stirling's formula expansion of log gamma - * B[], C[]: log gamma function between 2 and 3 - */ -#ifdef UNK -static double A[] = { - 8.11614167470508450300E-4, --5.95061904284301438324E-4, - 7.93650340457716943945E-4, --2.77777777730099687205E-3, - 8.33333333333331927722E-2 -}; -static double B[] = { --1.37825152569120859100E3, --3.88016315134637840924E4, --3.31612992738871184744E5, --1.16237097492762307383E6, --1.72173700820839662146E6, --8.53555664245765465627E5 -}; -static double C[] = { -/* 1.00000000000000000000E0, */ --3.51815701436523470549E2, --1.70642106651881159223E4, --2.20528590553854454839E5, --1.13933444367982507207E6, --2.53252307177582951285E6, --2.01889141433532773231E6 -}; -/* log( sqrt( 2*pi ) ) */ -static double LS2PI = 0.91893853320467274178; -#define MAXLGM 2.556348e305 -#endif - -#ifdef DEC -static unsigned short A[] = { -0035524,0141201,0034633,0031405, -0135433,0176755,0126007,0045030, -0035520,0006371,0003342,0172730, -0136066,0005540,0132605,0026407, -0037252,0125252,0125252,0125132 -}; -static unsigned short B[] = { -0142654,0044014,0077633,0035410, -0144027,0110641,0125335,0144760, -0144641,0165637,0142204,0047447, -0145215,0162027,0146246,0155211, -0145322,0026110,0010317,0110130, -0145120,0061472,0120300,0025363 -}; -static unsigned short C[] = { -/*0040200,0000000,0000000,0000000*/ -0142257,0164150,0163630,0112622, -0143605,0050153,0156116,0135272, -0144527,0056045,0145642,0062332, -0145213,0012063,0106250,0001025, -0145432,0111254,0044577,0115142, -0145366,0071133,0050217,0005122 -}; -/* log( sqrt( 2*pi ) ) */ -static unsigned short LS2P[] = {040153,037616,041445,0172645,}; -#define LS2PI *(double *)LS2P -#define MAXLGM 2.035093e36 -#endif - -#ifdef IBMPC -static unsigned short A[] = { -0x6661,0x2733,0x9850,0x3f4a, -0xe943,0xb580,0x7fbd,0xbf43, -0x5ebb,0x20dc,0x019f,0x3f4a, -0xa5a1,0x16b0,0xc16c,0xbf66, -0x554b,0x5555,0x5555,0x3fb5 -}; -static unsigned short B[] = { -0x6761,0x8ff3,0x8901,0xc095, -0xb93e,0x355b,0xf234,0xc0e2, -0x89e5,0xf890,0x3d73,0xc114, -0xdb51,0xf994,0xbc82,0xc131, -0xf20b,0x0219,0x4589,0xc13a, -0x055e,0x5418,0x0c67,0xc12a -}; -static unsigned short C[] = { -/*0x0000,0x0000,0x0000,0x3ff0,*/ -0x12b2,0x1cf3,0xfd0d,0xc075, -0xd757,0x7b89,0xaa0d,0xc0d0, -0x4c9b,0xb974,0xeb84,0xc10a, -0x0043,0x7195,0x6286,0xc131, -0xf34c,0x892f,0x5255,0xc143, -0xe14a,0x6a11,0xce4b,0xc13e -}; -/* log( sqrt( 2*pi ) ) */ -static unsigned short LS2P[] = { -0xbeb5,0xc864,0x67f1,0x3fed -}; -#define LS2PI *(double *)LS2P -#define MAXLGM 2.556348e305 -#endif - -#ifdef MIEEE -static unsigned short A[] = { -0x3f4a,0x9850,0x2733,0x6661, -0xbf43,0x7fbd,0xb580,0xe943, -0x3f4a,0x019f,0x20dc,0x5ebb, -0xbf66,0xc16c,0x16b0,0xa5a1, -0x3fb5,0x5555,0x5555,0x554b -}; -static unsigned short B[] = { -0xc095,0x8901,0x8ff3,0x6761, -0xc0e2,0xf234,0x355b,0xb93e, -0xc114,0x3d73,0xf890,0x89e5, -0xc131,0xbc82,0xf994,0xdb51, -0xc13a,0x4589,0x0219,0xf20b, -0xc12a,0x0c67,0x5418,0x055e -}; -static unsigned short C[] = { -0xc075,0xfd0d,0x1cf3,0x12b2, -0xc0d0,0xaa0d,0x7b89,0xd757, -0xc10a,0xeb84,0xb974,0x4c9b, -0xc131,0x6286,0x7195,0x0043, -0xc143,0x5255,0x892f,0xf34c, -0xc13e,0xce4b,0x6a11,0xe14a -}; -/* log( sqrt( 2*pi ) ) */ -static unsigned short LS2P[] = { -0x3fed,0x67f1,0xc864,0xbeb5 -}; -#define LS2PI *(double *)LS2P -#define MAXLGM 2.556348e305 -#endif - - -/* Logarithm of gamma function */ - - -double lgam(x) -double x; -{ -double p, q, u, w, z; -int i; - -sgngam = 1; -#ifdef NANS -if( isnan(x) ) - return(x); -#endif - -#ifdef INFINITIES -if( !isfinite(x) ) - return(INFINITY); -#endif - -if( x < -34.0 ) - { - q = -x; - w = lgam(q); /* note this modifies sgngam! */ - p = floor(q); - if( p == q ) - { -lgsing: -#ifdef INFINITIES - mtherr( "lgam", SING ); - return (INFINITY); -#else - goto loverf; -#endif - } - i = p; - if( (i & 1) == 0 ) - sgngam = -1; - else - sgngam = 1; - z = q - p; - if( z > 0.5 ) - { - p += 1.0; - z = p - q; - } - z = q * sin( PI * z ); - if( z == 0.0 ) - goto lgsing; -/* z = log(PI) - log( z ) - w;*/ - z = LOGPI - log( z ) - w; - return( z ); - } - -if( x < 13.0 ) - { - z = 1.0; - p = 0.0; - u = x; - while( u >= 3.0 ) - { - p -= 1.0; - u = x + p; - z *= u; - } - while( u < 2.0 ) - { - if( u == 0.0 ) - goto lgsing; - z /= u; - p += 1.0; - u = x + p; - } - if( z < 0.0 ) - { - sgngam = -1; - z = -z; - } - else - sgngam = 1; - if( u == 2.0 ) - return( log(z) ); - p -= 2.0; - x = x + p; - p = x * polevl( x, B, 5 ) / p1evl( x, C, 6); - return( log(z) + p ); - } - -if( x > MAXLGM ) - { -#ifdef INFINITIES - return( sgngam * INFINITY ); -#else -loverf: - mtherr( "lgam", OVERFLOW ); - return( sgngam * MAXNUM ); -#endif - } - -q = ( x - 0.5 ) * log(x) - x + LS2PI; -if( x > 1.0e8 ) - return( q ); - -p = 1.0/(x*x); -if( x >= 1000.0 ) - q += (( 7.9365079365079365079365e-4 * p - - 2.7777777777777777777778e-3) *p - + 0.0833333333333333333333) / x; -else - q += polevl( p, A, 4 ) / x; -return( q ); -} |