summaryrefslogtreecommitdiff
path: root/libm/double/fac.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/double/fac.c')
-rw-r--r--libm/double/fac.c263
1 files changed, 0 insertions, 263 deletions
diff --git a/libm/double/fac.c b/libm/double/fac.c
deleted file mode 100644
index a5748ac74..000000000
--- a/libm/double/fac.c
+++ /dev/null
@@ -1,263 +0,0 @@
-/* fac.c
- *
- * Factorial function
- *
- *
- *
- * SYNOPSIS:
- *
- * double y, fac();
- * int i;
- *
- * y = fac( i );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns factorial of i = 1 * 2 * 3 * ... * i.
- * fac(0) = 1.0.
- *
- * Due to machine arithmetic bounds the largest value of
- * i accepted is 33 in DEC arithmetic or 170 in IEEE
- * arithmetic. Greater values, or negative ones,
- * produce an error message and return MAXNUM.
- *
- *
- *
- * ACCURACY:
- *
- * For i < 34 the values are simply tabulated, and have
- * full machine accuracy. If i > 55, fac(i) = gamma(i+1);
- * see gamma.c.
- *
- * Relative error:
- * arithmetic domain peak
- * IEEE 0, 170 1.4e-15
- * DEC 0, 33 1.4e-17
- *
- */
-
-/*
-Cephes Math Library Release 2.8: June, 2000
-Copyright 1984, 1987, 2000 by Stephen L. Moshier
-*/
-
-#include <math.h>
-
-/* Factorials of integers from 0 through 33 */
-#ifdef UNK
-static double factbl[] = {
- 1.00000000000000000000E0,
- 1.00000000000000000000E0,
- 2.00000000000000000000E0,
- 6.00000000000000000000E0,
- 2.40000000000000000000E1,
- 1.20000000000000000000E2,
- 7.20000000000000000000E2,
- 5.04000000000000000000E3,
- 4.03200000000000000000E4,
- 3.62880000000000000000E5,
- 3.62880000000000000000E6,
- 3.99168000000000000000E7,
- 4.79001600000000000000E8,
- 6.22702080000000000000E9,
- 8.71782912000000000000E10,
- 1.30767436800000000000E12,
- 2.09227898880000000000E13,
- 3.55687428096000000000E14,
- 6.40237370572800000000E15,
- 1.21645100408832000000E17,
- 2.43290200817664000000E18,
- 5.10909421717094400000E19,
- 1.12400072777760768000E21,
- 2.58520167388849766400E22,
- 6.20448401733239439360E23,
- 1.55112100433309859840E25,
- 4.03291461126605635584E26,
- 1.0888869450418352160768E28,
- 3.04888344611713860501504E29,
- 8.841761993739701954543616E30,
- 2.6525285981219105863630848E32,
- 8.22283865417792281772556288E33,
- 2.6313083693369353016721801216E35,
- 8.68331761881188649551819440128E36
-};
-#define MAXFAC 33
-#endif
-
-#ifdef DEC
-static unsigned short factbl[] = {
-0040200,0000000,0000000,0000000,
-0040200,0000000,0000000,0000000,
-0040400,0000000,0000000,0000000,
-0040700,0000000,0000000,0000000,
-0041300,0000000,0000000,0000000,
-0041760,0000000,0000000,0000000,
-0042464,0000000,0000000,0000000,
-0043235,0100000,0000000,0000000,
-0044035,0100000,0000000,0000000,
-0044661,0030000,0000000,0000000,
-0045535,0076000,0000000,0000000,
-0046430,0042500,0000000,0000000,
-0047344,0063740,0000000,0000000,
-0050271,0112146,0000000,0000000,
-0051242,0060731,0040000,0000000,
-0052230,0035673,0126000,0000000,
-0053230,0035673,0126000,0000000,
-0054241,0137567,0063300,0000000,
-0055265,0173546,0051630,0000000,
-0056330,0012711,0101504,0100000,
-0057407,0006635,0171012,0150000,
-0060461,0040737,0046656,0030400,
-0061563,0135223,0005317,0101540,
-0062657,0027031,0127705,0023155,
-0064003,0061223,0041723,0156322,
-0065115,0045006,0014773,0004410,
-0066246,0146044,0172433,0173526,
-0067414,0136077,0027317,0114261,
-0070566,0044556,0110753,0045465,
-0071737,0031214,0032075,0036050,
-0073121,0037543,0070371,0064146,
-0074312,0132550,0052561,0116443,
-0075512,0132550,0052561,0116443,
-0076721,0005423,0114035,0025014
-};
-#define MAXFAC 33
-#endif
-
-#ifdef IBMPC
-static unsigned short factbl[] = {
-0x0000,0x0000,0x0000,0x3ff0,
-0x0000,0x0000,0x0000,0x3ff0,
-0x0000,0x0000,0x0000,0x4000,
-0x0000,0x0000,0x0000,0x4018,
-0x0000,0x0000,0x0000,0x4038,
-0x0000,0x0000,0x0000,0x405e,
-0x0000,0x0000,0x8000,0x4086,
-0x0000,0x0000,0xb000,0x40b3,
-0x0000,0x0000,0xb000,0x40e3,
-0x0000,0x0000,0x2600,0x4116,
-0x0000,0x0000,0xaf80,0x414b,
-0x0000,0x0000,0x08a8,0x4183,
-0x0000,0x0000,0x8cfc,0x41bc,
-0x0000,0xc000,0x328c,0x41f7,
-0x0000,0x2800,0x4c3b,0x4234,
-0x0000,0x7580,0x0777,0x4273,
-0x0000,0x7580,0x0777,0x42b3,
-0x0000,0xecd8,0x37ee,0x42f4,
-0x0000,0xca73,0xbeec,0x4336,
-0x9000,0x3068,0x02b9,0x437b,
-0x5a00,0xbe41,0xe1b3,0x43c0,
-0xc620,0xe9b5,0x283b,0x4406,
-0xf06c,0x6159,0x7752,0x444e,
-0xa4ce,0x35f8,0xe5c3,0x4495,
-0x7b9a,0x687a,0x6c52,0x44e0,
-0x6121,0xc33f,0xa940,0x4529,
-0x7eeb,0x9ea3,0xd984,0x4574,
-0xf316,0xe5d9,0x9787,0x45c1,
-0x6967,0xd23d,0xc92d,0x460e,
-0xa785,0x8687,0xe651,0x465b,
-0x2d0d,0x6e1f,0x27ec,0x46aa,
-0x33a4,0x0aae,0x56ad,0x46f9,
-0x33a4,0x0aae,0x56ad,0x4749,
-0xa541,0x7303,0x2162,0x479a
-};
-#define MAXFAC 170
-#endif
-
-#ifdef MIEEE
-static unsigned short factbl[] = {
-0x3ff0,0x0000,0x0000,0x0000,
-0x3ff0,0x0000,0x0000,0x0000,
-0x4000,0x0000,0x0000,0x0000,
-0x4018,0x0000,0x0000,0x0000,
-0x4038,0x0000,0x0000,0x0000,
-0x405e,0x0000,0x0000,0x0000,
-0x4086,0x8000,0x0000,0x0000,
-0x40b3,0xb000,0x0000,0x0000,
-0x40e3,0xb000,0x0000,0x0000,
-0x4116,0x2600,0x0000,0x0000,
-0x414b,0xaf80,0x0000,0x0000,
-0x4183,0x08a8,0x0000,0x0000,
-0x41bc,0x8cfc,0x0000,0x0000,
-0x41f7,0x328c,0xc000,0x0000,
-0x4234,0x4c3b,0x2800,0x0000,
-0x4273,0x0777,0x7580,0x0000,
-0x42b3,0x0777,0x7580,0x0000,
-0x42f4,0x37ee,0xecd8,0x0000,
-0x4336,0xbeec,0xca73,0x0000,
-0x437b,0x02b9,0x3068,0x9000,
-0x43c0,0xe1b3,0xbe41,0x5a00,
-0x4406,0x283b,0xe9b5,0xc620,
-0x444e,0x7752,0x6159,0xf06c,
-0x4495,0xe5c3,0x35f8,0xa4ce,
-0x44e0,0x6c52,0x687a,0x7b9a,
-0x4529,0xa940,0xc33f,0x6121,
-0x4574,0xd984,0x9ea3,0x7eeb,
-0x45c1,0x9787,0xe5d9,0xf316,
-0x460e,0xc92d,0xd23d,0x6967,
-0x465b,0xe651,0x8687,0xa785,
-0x46aa,0x27ec,0x6e1f,0x2d0d,
-0x46f9,0x56ad,0x0aae,0x33a4,
-0x4749,0x56ad,0x0aae,0x33a4,
-0x479a,0x2162,0x7303,0xa541
-};
-#define MAXFAC 170
-#endif
-
-#ifdef ANSIPROT
-double gamma ( double );
-#else
-double gamma();
-#endif
-extern double MAXNUM;
-
-double fac(i)
-int i;
-{
-double x, f, n;
-int j;
-
-if( i < 0 )
- {
- mtherr( "fac", SING );
- return( MAXNUM );
- }
-
-if( i > MAXFAC )
- {
- mtherr( "fac", OVERFLOW );
- return( MAXNUM );
- }
-
-/* Get answer from table for small i. */
-if( i < 34 )
- {
-#ifdef UNK
- return( factbl[i] );
-#else
- return( *(double *)(&factbl[4*i]) );
-#endif
- }
-/* Use gamma function for large i. */
-if( i > 55 )
- {
- x = i + 1;
- return( gamma(x) );
- }
-/* Compute directly for intermediate i. */
-n = 34.0;
-f = 34.0;
-for( j=35; j<=i; j++ )
- {
- n += 1.0;
- f *= n;
- }
-#ifdef UNK
- f *= factbl[33];
-#else
- f *= *(double *)(&factbl[4*33]);
-#endif
-return( f );
-}