diff options
Diffstat (limited to 'libm/double/exp.c')
-rw-r--r-- | libm/double/exp.c | 203 |
1 files changed, 203 insertions, 0 deletions
diff --git a/libm/double/exp.c b/libm/double/exp.c new file mode 100644 index 000000000..6d0a8a872 --- /dev/null +++ b/libm/double/exp.c @@ -0,0 +1,203 @@ +/* exp.c + * + * Exponential function + * + * + * + * SYNOPSIS: + * + * double x, y, exp(); + * + * y = exp( x ); + * + * + * + * DESCRIPTION: + * + * Returns e (2.71828...) raised to the x power. + * + * Range reduction is accomplished by separating the argument + * into an integer k and fraction f such that + * + * x k f + * e = 2 e. + * + * A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) + * of degree 2/3 is used to approximate exp(f) in the basic + * interval [-0.5, 0.5]. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC +- 88 50000 2.8e-17 7.0e-18 + * IEEE +- 708 40000 2.0e-16 5.6e-17 + * + * + * Error amplification in the exponential function can be + * a serious matter. The error propagation involves + * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), + * which shows that a 1 lsb error in representing X produces + * a relative error of X times 1 lsb in the function. + * While the routine gives an accurate result for arguments + * that are exactly represented by a double precision + * computer number, the result contains amplified roundoff + * error for large arguments not exactly represented. + * + * + * ERROR MESSAGES: + * + * message condition value returned + * exp underflow x < MINLOG 0.0 + * exp overflow x > MAXLOG INFINITY + * + */ + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1995, 2000 by Stephen L. Moshier +*/ + + +/* Exponential function */ + +#include <math.h> + +#ifdef UNK + +static double P[] = { + 1.26177193074810590878E-4, + 3.02994407707441961300E-2, + 9.99999999999999999910E-1, +}; +static double Q[] = { + 3.00198505138664455042E-6, + 2.52448340349684104192E-3, + 2.27265548208155028766E-1, + 2.00000000000000000009E0, +}; +static double C1 = 6.93145751953125E-1; +static double C2 = 1.42860682030941723212E-6; +#endif + +#ifdef DEC +static unsigned short P[] = { +0035004,0047156,0127442,0057502, +0036770,0033210,0063121,0061764, +0040200,0000000,0000000,0000000, +}; +static unsigned short Q[] = { +0033511,0072665,0160662,0176377, +0036045,0070715,0124105,0132777, +0037550,0134114,0142077,0001637, +0040400,0000000,0000000,0000000, +}; +static unsigned short sc1[] = {0040061,0071000,0000000,0000000}; +#define C1 (*(double *)sc1) +static unsigned short sc2[] = {0033277,0137216,0075715,0057117}; +#define C2 (*(double *)sc2) +#endif + +#ifdef IBMPC +static unsigned short P[] = { +0x4be8,0xd5e4,0x89cd,0x3f20, +0x2c7e,0x0cca,0x06d1,0x3f9f, +0x0000,0x0000,0x0000,0x3ff0, +}; +static unsigned short Q[] = { +0x5fa0,0xbc36,0x2eb6,0x3ec9, +0xb6c0,0xb508,0xae39,0x3f64, +0xe074,0x9887,0x1709,0x3fcd, +0x0000,0x0000,0x0000,0x4000, +}; +static unsigned short sc1[] = {0x0000,0x0000,0x2e40,0x3fe6}; +#define C1 (*(double *)sc1) +static unsigned short sc2[] = {0xabca,0xcf79,0xf7d1,0x3eb7}; +#define C2 (*(double *)sc2) +#endif + +#ifdef MIEEE +static unsigned short P[] = { +0x3f20,0x89cd,0xd5e4,0x4be8, +0x3f9f,0x06d1,0x0cca,0x2c7e, +0x3ff0,0x0000,0x0000,0x0000, +}; +static unsigned short Q[] = { +0x3ec9,0x2eb6,0xbc36,0x5fa0, +0x3f64,0xae39,0xb508,0xb6c0, +0x3fcd,0x1709,0x9887,0xe074, +0x4000,0x0000,0x0000,0x0000, +}; +static unsigned short sc1[] = {0x3fe6,0x2e40,0x0000,0x0000}; +#define C1 (*(double *)sc1) +static unsigned short sc2[] = {0x3eb7,0xf7d1,0xcf79,0xabca}; +#define C2 (*(double *)sc2) +#endif + +#ifdef ANSIPROT +extern double polevl ( double, void *, int ); +extern double p1evl ( double, void *, int ); +extern double floor ( double ); +extern double ldexp ( double, int ); +extern int isnan ( double ); +extern int isfinite ( double ); +#else +double polevl(), p1evl(), floor(), ldexp(); +int isnan(), isfinite(); +#endif +extern double LOGE2, LOG2E, MAXLOG, MINLOG, MAXNUM; +#ifdef INFINITIES +extern double INFINITY; +#endif + +double exp(x) +double x; +{ +double px, xx; +int n; + +#ifdef NANS +if( isnan(x) ) + return(x); +#endif +if( x > MAXLOG) + { +#ifdef INFINITIES + return( INFINITY ); +#else + mtherr( "exp", OVERFLOW ); + return( MAXNUM ); +#endif + } + +if( x < MINLOG ) + { +#ifndef INFINITIES + mtherr( "exp", UNDERFLOW ); +#endif + return(0.0); + } + +/* Express e**x = e**g 2**n + * = e**g e**( n loge(2) ) + * = e**( g + n loge(2) ) + */ +px = floor( LOG2E * x + 0.5 ); /* floor() truncates toward -infinity. */ +n = px; +x -= px * C1; +x -= px * C2; + +/* rational approximation for exponential + * of the fractional part: + * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) + */ +xx = x * x; +px = x * polevl( xx, P, 2 ); +x = px/( polevl( xx, Q, 3 ) - px ); +x = 1.0 + 2.0 * x; + +/* multiply by power of 2 */ +x = ldexp( x, n ); +return(x); +} |