diff options
Diffstat (limited to 'libc/sysdeps/linux/sparc64/soft-fp/op-1.h')
-rw-r--r-- | libc/sysdeps/linux/sparc64/soft-fp/op-1.h | 369 |
1 files changed, 369 insertions, 0 deletions
diff --git a/libc/sysdeps/linux/sparc64/soft-fp/op-1.h b/libc/sysdeps/linux/sparc64/soft-fp/op-1.h new file mode 100644 index 000000000..e1e39664d --- /dev/null +++ b/libc/sysdeps/linux/sparc64/soft-fp/op-1.h @@ -0,0 +1,369 @@ +/* Software floating-point emulation. + Basic one-word fraction declaration and manipulation. + Copyright (C) 1997-2017 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Richard Henderson (rth@cygnus.com), + Jakub Jelinek (jj@ultra.linux.cz), + David S. Miller (davem@redhat.com) and + Peter Maydell (pmaydell@chiark.greenend.org.uk). + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + In addition to the permissions in the GNU Lesser General Public + License, the Free Software Foundation gives you unlimited + permission to link the compiled version of this file into + combinations with other programs, and to distribute those + combinations without any restriction coming from the use of this + file. (The Lesser General Public License restrictions do apply in + other respects; for example, they cover modification of the file, + and distribution when not linked into a combine executable.) + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ + +#ifndef SOFT_FP_OP_1_H +#define SOFT_FP_OP_1_H 1 + +#define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f _FP_ZERO_INIT +#define _FP_FRAC_COPY_1(D, S) (D##_f = S##_f) +#define _FP_FRAC_SET_1(X, I) (X##_f = I) +#define _FP_FRAC_HIGH_1(X) (X##_f) +#define _FP_FRAC_LOW_1(X) (X##_f) +#define _FP_FRAC_WORD_1(X, w) (X##_f) + +#define _FP_FRAC_ADDI_1(X, I) (X##_f += I) +#define _FP_FRAC_SLL_1(X, N) \ + do \ + { \ + if (__builtin_constant_p (N) && (N) == 1) \ + X##_f += X##_f; \ + else \ + X##_f <<= (N); \ + } \ + while (0) +#define _FP_FRAC_SRL_1(X, N) (X##_f >>= N) + +/* Right shift with sticky-lsb. */ +#define _FP_FRAC_SRST_1(X, S, N, sz) __FP_FRAC_SRST_1 (X##_f, S, (N), (sz)) +#define _FP_FRAC_SRS_1(X, N, sz) __FP_FRAC_SRS_1 (X##_f, (N), (sz)) + +#define __FP_FRAC_SRST_1(X, S, N, sz) \ + do \ + { \ + S = (__builtin_constant_p (N) && (N) == 1 \ + ? X & 1 \ + : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \ + X = X >> (N); \ + } \ + while (0) + +#define __FP_FRAC_SRS_1(X, N, sz) \ + (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1 \ + ? X & 1 \ + : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) + +#define _FP_FRAC_ADD_1(R, X, Y) (R##_f = X##_f + Y##_f) +#define _FP_FRAC_SUB_1(R, X, Y) (R##_f = X##_f - Y##_f) +#define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f) +#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ ((z), X##_f) + +/* Predicates. */ +#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0) +#define _FP_FRAC_ZEROP_1(X) (X##_f == 0) +#define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs) +#define _FP_FRAC_CLEAR_OVERP_1(fs, X) (X##_f &= ~_FP_OVERFLOW_##fs) +#define _FP_FRAC_HIGHBIT_DW_1(fs, X) (X##_f & _FP_HIGHBIT_DW_##fs) +#define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f) +#define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f) +#define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f) + +#define _FP_ZEROFRAC_1 0 +#define _FP_MINFRAC_1 1 +#define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0) + +/* Unpack the raw bits of a native fp value. Do not classify or + normalize the data. */ + +#define _FP_UNPACK_RAW_1(fs, X, val) \ + do \ + { \ + union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo; \ + _FP_UNPACK_RAW_1_flo.flt = (val); \ + \ + X##_f = _FP_UNPACK_RAW_1_flo.bits.frac; \ + X##_e = _FP_UNPACK_RAW_1_flo.bits.exp; \ + X##_s = _FP_UNPACK_RAW_1_flo.bits.sign; \ + } \ + while (0) + +#define _FP_UNPACK_RAW_1_P(fs, X, val) \ + do \ + { \ + union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo \ + = (union _FP_UNION_##fs *) (val); \ + \ + X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac; \ + X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp; \ + X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign; \ + } \ + while (0) + +/* Repack the raw bits of a native fp value. */ + +#define _FP_PACK_RAW_1(fs, val, X) \ + do \ + { \ + union _FP_UNION_##fs _FP_PACK_RAW_1_flo; \ + \ + _FP_PACK_RAW_1_flo.bits.frac = X##_f; \ + _FP_PACK_RAW_1_flo.bits.exp = X##_e; \ + _FP_PACK_RAW_1_flo.bits.sign = X##_s; \ + \ + (val) = _FP_PACK_RAW_1_flo.flt; \ + } \ + while (0) + +#define _FP_PACK_RAW_1_P(fs, val, X) \ + do \ + { \ + union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo \ + = (union _FP_UNION_##fs *) (val); \ + \ + _FP_PACK_RAW_1_P_flo->bits.frac = X##_f; \ + _FP_PACK_RAW_1_P_flo->bits.exp = X##_e; \ + _FP_PACK_RAW_1_P_flo->bits.sign = X##_s; \ + } \ + while (0) + + +/* Multiplication algorithms: */ + +/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the + multiplication immediately. */ + +#define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y) \ + do \ + { \ + R##_f = X##_f * Y##_f; \ + } \ + while (0) + +#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \ + do \ + { \ + _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y); \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits)); \ + } \ + while (0) + +/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ + +#define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit) \ + do \ + { \ + doit (R##_f1, R##_f0, X##_f, Y##_f); \ + } \ + while (0) + +#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \ + do \ + { \ + _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z); \ + _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z, \ + X, Y, doit); \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1, \ + 2*(wfracbits)); \ + R##_f = _FP_MUL_MEAT_1_wide_Z_f0; \ + } \ + while (0) + +/* Finally, a simple widening multiply algorithm. What fun! */ + +#define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y) \ + do \ + { \ + _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl; \ + _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl; \ + _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a); \ + \ + /* Split the words in half. */ \ + _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ + _FP_MUL_MEAT_DW_1_hard_xl \ + = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \ + _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ + _FP_MUL_MEAT_DW_1_hard_yl \ + = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \ + \ + /* Multiply the pieces. */ \ + R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl; \ + _FP_MUL_MEAT_DW_1_hard_a_f0 \ + = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl; \ + _FP_MUL_MEAT_DW_1_hard_a_f1 \ + = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh; \ + R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh; \ + \ + /* Reassemble into two full words. */ \ + if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1) \ + < _FP_MUL_MEAT_DW_1_hard_a_f1) \ + R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \ + _FP_MUL_MEAT_DW_1_hard_a_f1 \ + = _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2); \ + _FP_MUL_MEAT_DW_1_hard_a_f0 \ + = _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2); \ + _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a); \ + } \ + while (0) + +#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \ + do \ + { \ + _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z); \ + _FP_MUL_MEAT_DW_1_hard ((wfracbits), \ + _FP_MUL_MEAT_1_hard_z, X, Y); \ + \ + /* Normalize. */ \ + _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z, \ + (wfracbits) - 1, 2*(wfracbits)); \ + R##_f = _FP_MUL_MEAT_1_hard_z_f0; \ + } \ + while (0) + + +/* Division algorithms: */ + +/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the + division immediately. Give this macro either _FP_DIV_HELP_imm for + C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you + choose will depend on what the compiler does with divrem4. */ + +#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ + do \ + { \ + _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r; \ + X##_f <<= (X##_f < Y##_f \ + ? R##_e--, _FP_WFRACBITS_##fs \ + : _FP_WFRACBITS_##fs - 1); \ + doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f); \ + R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0); \ + } \ + while (0) + +/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd + that may be useful in this situation. This first is for a primitive + that requires normalization, the second for one that does not. Look + for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ + +#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ + do \ + { \ + _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh; \ + _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl; \ + _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q; \ + _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r; \ + _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y; \ + \ + /* Normalize Y -- i.e. make the most significant bit set. */ \ + _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs; \ + \ + /* Shift X op correspondingly high, that is, up one full word. */ \ + if (X##_f < Y##_f) \ + { \ + R##_e--; \ + _FP_DIV_MEAT_1_udiv_norm_nl = 0; \ + _FP_DIV_MEAT_1_udiv_norm_nh = X##_f; \ + } \ + else \ + { \ + _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1); \ + _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1; \ + } \ + \ + udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q, \ + _FP_DIV_MEAT_1_udiv_norm_r, \ + _FP_DIV_MEAT_1_udiv_norm_nh, \ + _FP_DIV_MEAT_1_udiv_norm_nl, \ + _FP_DIV_MEAT_1_udiv_norm_y); \ + R##_f = (_FP_DIV_MEAT_1_udiv_norm_q \ + | (_FP_DIV_MEAT_1_udiv_norm_r != 0)); \ + } \ + while (0) + +#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ + do \ + { \ + _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl; \ + _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r; \ + if (X##_f < Y##_f) \ + { \ + R##_e--; \ + _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs; \ + _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs; \ + } \ + else \ + { \ + _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ + _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ + } \ + udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r, \ + _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl, \ + Y##_f); \ + R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0); \ + } \ + while (0) + + +/* Square root algorithms: + We have just one right now, maybe Newton approximation + should be added for those machines where division is fast. */ + +#define _FP_SQRT_MEAT_1(R, S, T, X, q) \ + do \ + { \ + while ((q) != _FP_WORK_ROUND) \ + { \ + T##_f = S##_f + (q); \ + if (T##_f <= X##_f) \ + { \ + S##_f = T##_f + (q); \ + X##_f -= T##_f; \ + R##_f += (q); \ + } \ + _FP_FRAC_SLL_1 (X, 1); \ + (q) >>= 1; \ + } \ + if (X##_f) \ + { \ + if (S##_f < X##_f) \ + R##_f |= _FP_WORK_ROUND; \ + R##_f |= _FP_WORK_STICKY; \ + } \ + } \ + while (0) + +/* Assembly/disassembly for converting to/from integral types. + No shifting or overflow handled here. */ + +#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) ((r) = X##_f) +#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = (r)) + + +/* Convert FP values between word sizes. */ + +#define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f) + +#endif /* !SOFT_FP_OP_1_H */ |