summaryrefslogtreecommitdiff
path: root/libm
diff options
context:
space:
mode:
authorBernhard Reutner-Fischer <rep.dot.nop@gmail.com>2008-09-25 18:57:11 +0000
committerBernhard Reutner-Fischer <rep.dot.nop@gmail.com>2008-09-25 18:57:11 +0000
commitc8d8b6d30a29b353637cd1c7379402bff2481b79 (patch)
tree7d9d79d337b153e7e170e6eea6209cfd5281492b /libm
parent087a339a77231f9f2e93bf14233771bf8077f73c (diff)
- add __ieee754_log2()
Diffstat (limited to 'libm')
-rw-r--r--libm/Makefile.in2
-rw-r--r--libm/e_log2.c130
-rw-r--r--libm/math_private.h1
3 files changed, 132 insertions, 1 deletions
diff --git a/libm/Makefile.in b/libm/Makefile.in
index bcee5f35c..01c63d15a 100644
--- a/libm/Makefile.in
+++ b/libm/Makefile.in
@@ -57,7 +57,7 @@ ifeq ($(DO_C99_MATH),y)
libm_CSRC := \
e_acos.c e_acosh.c e_asin.c e_atan2.c e_atanh.c e_cosh.c \
e_exp.c e_fmod.c e_gamma.c e_gamma_r.c e_hypot.c e_j0.c \
- e_j1.c e_jn.c e_lgamma.c e_lgamma_r.c e_log.c e_log10.c \
+ e_j1.c e_jn.c e_lgamma.c e_lgamma_r.c e_log.c e_log2.c e_log10.c \
e_pow.c e_remainder.c e_rem_pio2.c e_scalb.c e_sinh.c \
e_sqrt.c k_cos.c k_rem_pio2.c k_sin.c k_standard.c k_tan.c \
s_asinh.c s_atan.c s_cbrt.c s_ceil.c s_copysign.c s_cos.c \
diff --git a/libm/e_log2.c b/libm/e_log2.c
new file mode 100644
index 000000000..894a96df0
--- /dev/null
+++ b/libm/e_log2.c
@@ -0,0 +1,130 @@
+/* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>. */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __ieee754_log2(x)
+ * Return the logarithm to base 2 of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k + log(1+f).
+ * = k+(f-(hfsq-(s*(hfsq+R))))
+ *
+ * Special cases:
+ * log2(x) is NaN with signal if x < 0 (including -INF) ;
+ * log2(+INF) is +INF; log(0) is -INF with signal;
+ * log2(NaN) is that NaN with no signal.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2 = 0.69314718055994530942,
+two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_log2(double x)
+#else
+ double __ieee754_log2(x)
+ double x;
+#endif
+{
+ double hfsq,f,s,z,R,w,t1,t2,dk;
+ int32_t k,hx,i,j;
+ u_int32_t lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+
+ k=0;
+ if (hx < 0x00100000) { /* x < 2**-1022 */
+ if (((hx&0x7fffffff)|lx)==0)
+ return -two54/(x-x); /* log(+-0)=-inf */
+ if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
+ k -= 54; x *= two54; /* subnormal number, scale up x */
+ GET_HIGH_WORD(hx,x);
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ k += (hx>>20)-1023;
+ hx &= 0x000fffff;
+ i = (hx+0x95f64)&0x100000;
+ SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
+ k += (i>>20);
+ dk = (double) k;
+ f = x-1.0;
+ if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
+ if(f==zero) return dk;
+ R = f*f*(0.5-0.33333333333333333*f);
+ return dk-(R-f)/ln2;
+ }
+ s = f/(2.0+f);
+ z = s*s;
+ i = hx-0x6147a;
+ w = z*z;
+ j = 0x6b851-hx;
+ t1= w*(Lg2+w*(Lg4+w*Lg6));
+ t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ i |= j;
+ R = t2+t1;
+ if(i>0) {
+ hfsq=0.5*f*f;
+ return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
+ } else {
+ return dk-((s*(f-R))-f)/ln2;
+ }
+}
diff --git a/libm/math_private.h b/libm/math_private.h
index b0d948c07..f85db12a8 100644
--- a/libm/math_private.h
+++ b/libm/math_private.h
@@ -158,6 +158,7 @@ extern double __ieee754_sqrt (double) attribute_hidden;
extern double __ieee754_acos (double) attribute_hidden;
extern double __ieee754_acosh (double) attribute_hidden;
extern double __ieee754_log (double) attribute_hidden;
+extern double __ieee754_log2 (double) attribute_hidden;
extern double __ieee754_atanh (double) attribute_hidden;
extern double __ieee754_asin (double) attribute_hidden;
extern double __ieee754_atan2 (double,double) attribute_hidden;