summaryrefslogtreecommitdiff
path: root/libm/ldouble/sinl.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/sinl.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/ldouble/sinl.c')
-rw-r--r--libm/ldouble/sinl.c342
1 files changed, 0 insertions, 342 deletions
diff --git a/libm/ldouble/sinl.c b/libm/ldouble/sinl.c
deleted file mode 100644
index dc7d739f9..000000000
--- a/libm/ldouble/sinl.c
+++ /dev/null
@@ -1,342 +0,0 @@
-/* sinl.c
- *
- * Circular sine, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, sinl();
- *
- * y = sinl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by the Cody
- * and Waite polynomial form
- * x + x**3 P(x**2) .
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - .5 x**2 + x**4 Q(x**2) .
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-5.5e11 200,000 1.2e-19 2.9e-20
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2**39 0.0
- *
- * Loss of precision occurs for x > 2**39 = 5.49755813888e11.
- * The routine as implemented flags a TLOSS error for
- * x > 2**39 and returns 0.0.
- */
- /* cosl.c
- *
- * Circular cosine, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, cosl();
- *
- * y = cosl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - .5 x**2 + x**4 Q(x**2) .
- * Between pi/4 and pi/2 the sine is represented by the Cody
- * and Waite polynomial form
- * x + x**3 P(x**2) .
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-5.5e11 50000 1.2e-19 2.9e-20
- */
-
-/* sin.c */
-
-/*
-Cephes Math Library Release 2.7: May, 1998
-Copyright 1985, 1990, 1998 by Stephen L. Moshier
-*/
-
-#include <math.h>
-
-#ifdef UNK
-static long double sincof[7] = {
--7.5785404094842805756289E-13L,
- 1.6058363167320443249231E-10L,
--2.5052104881870868784055E-8L,
- 2.7557319214064922217861E-6L,
--1.9841269841254799668344E-4L,
- 8.3333333333333225058715E-3L,
--1.6666666666666666640255E-1L,
-};
-static long double coscof[7] = {
- 4.7377507964246204691685E-14L,
--1.1470284843425359765671E-11L,
- 2.0876754287081521758361E-9L,
--2.7557319214999787979814E-7L,
- 2.4801587301570552304991E-5L,
--1.3888888888888872993737E-3L,
- 4.1666666666666666609054E-2L,
-};
-static long double DP1 = 7.853981554508209228515625E-1L;
-static long double DP2 = 7.946627356147928367136046290398E-9L;
-static long double DP3 = 3.061616997868382943065164830688E-17L;
-#endif
-
-#ifdef IBMPC
-static short sincof[] = {
-0x4e27,0xe1d6,0x2389,0xd551,0xbfd6, XPD
-0x64d7,0xe706,0x4623,0xb090,0x3fde, XPD
-0x01b1,0xbf34,0x2946,0xd732,0xbfe5, XPD
-0xc8f7,0x9845,0x1d29,0xb8ef,0x3fec, XPD
-0x6514,0x0c53,0x00d0,0xd00d,0xbff2, XPD
-0x569a,0x8888,0x8888,0x8888,0x3ff8, XPD
-0xaa97,0xaaaa,0xaaaa,0xaaaa,0xbffc, XPD
-};
-static short coscof[] = {
-0x7436,0x6f99,0x8c3a,0xd55e,0x3fd2, XPD
-0x2f37,0x58f4,0x920f,0xc9c9,0xbfda, XPD
-0x5350,0x659e,0xc648,0x8f76,0x3fe2, XPD
-0x4d2b,0xf5c6,0x7dba,0x93f2,0xbfe9, XPD
-0x53ed,0x0c66,0x00d0,0xd00d,0x3fef, XPD
-0x7b67,0x0b60,0x60b6,0xb60b,0xbff5, XPD
-0xaa9a,0xaaaa,0xaaaa,0xaaaa,0x3ffa, XPD
-};
-static short P1[] = {0x0000,0x0000,0xda80,0xc90f,0x3ffe, XPD};
-static short P2[] = {0x0000,0x0000,0xa300,0x8885,0x3fe4, XPD};
-static short P3[] = {0x3707,0xa2e0,0x3198,0x8d31,0x3fc8, XPD};
-#define DP1 *(long double *)P1
-#define DP2 *(long double *)P2
-#define DP3 *(long double *)P3
-#endif
-
-#ifdef MIEEE
-static long sincof[] = {
-0xbfd60000,0xd5512389,0xe1d64e27,
-0x3fde0000,0xb0904623,0xe70664d7,
-0xbfe50000,0xd7322946,0xbf3401b1,
-0x3fec0000,0xb8ef1d29,0x9845c8f7,
-0xbff20000,0xd00d00d0,0x0c536514,
-0x3ff80000,0x88888888,0x8888569a,
-0xbffc0000,0xaaaaaaaa,0xaaaaaa97,
-};
-static long coscof[] = {
-0x3fd20000,0xd55e8c3a,0x6f997436,
-0xbfda0000,0xc9c9920f,0x58f42f37,
-0x3fe20000,0x8f76c648,0x659e5350,
-0xbfe90000,0x93f27dba,0xf5c64d2b,
-0x3fef0000,0xd00d00d0,0x0c6653ed,
-0xbff50000,0xb60b60b6,0x0b607b67,
-0x3ffa0000,0xaaaaaaaa,0xaaaaaa9a,
-};
-static long P1[] = {0x3ffe0000,0xc90fda80,0x00000000};
-static long P2[] = {0x3fe40000,0x8885a300,0x00000000};
-static long P3[] = {0x3fc80000,0x8d313198,0xa2e03707};
-#define DP1 *(long double *)P1
-#define DP2 *(long double *)P2
-#define DP3 *(long double *)P3
-#endif
-
-static long double lossth = 5.49755813888e11L; /* 2^39 */
-extern long double PIO4L;
-#ifdef ANSIPROT
-extern long double polevll ( long double, void *, int );
-extern long double floorl ( long double );
-extern long double ldexpl ( long double, int );
-extern int isnanl ( long double );
-extern int isfinitel ( long double );
-#else
-long double polevll(), floorl(), ldexpl(), isnanl(), isfinitel();
-#endif
-#ifdef INFINITIES
-extern long double INFINITYL;
-#endif
-#ifdef NANS
-extern long double NANL;
-#endif
-
-long double sinl(x)
-long double x;
-{
-long double y, z, zz;
-int j, sign;
-
-#ifdef NANS
-if( isnanl(x) )
- return(x);
-#endif
-#ifdef MINUSZERO
-if( x == 0.0L )
- return(x);
-#endif
-#ifdef NANS
-if( !isfinitel(x) )
- {
- mtherr( "sinl", DOMAIN );
-#ifdef NANS
- return(NANL);
-#else
- return(0.0L);
-#endif
- }
-#endif
-/* make argument positive but save the sign */
-sign = 1;
-if( x < 0 )
- {
- x = -x;
- sign = -1;
- }
-
-if( x > lossth )
- {
- mtherr( "sinl", TLOSS );
- return(0.0L);
- }
-
-y = floorl( x/PIO4L ); /* integer part of x/PIO4 */
-
-/* strip high bits of integer part to prevent integer overflow */
-z = ldexpl( y, -4 );
-z = floorl(z); /* integer part of y/8 */
-z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
-
-j = z; /* convert to integer for tests on the phase angle */
-/* map zeros to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0L;
- }
-j = j & 07; /* octant modulo 360 degrees */
-/* reflect in x axis */
-if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
-
-/* Extended precision modular arithmetic */
-z = ((x - y * DP1) - y * DP2) - y * DP3;
-
-zz = z * z;
-if( (j==1) || (j==2) )
- {
- y = 1.0L - ldexpl(zz,-1) + zz * zz * polevll( zz, coscof, 6 );
- }
-else
- {
- y = z + z * (zz * polevll( zz, sincof, 6 ));
- }
-
-if(sign < 0)
- y = -y;
-
-return(y);
-}
-
-
-
-
-
-long double cosl(x)
-long double x;
-{
-long double y, z, zz;
-long i;
-int j, sign;
-
-
-#ifdef NANS
-if( isnanl(x) )
- return(x);
-#endif
-#ifdef INFINITIES
-if( !isfinitel(x) )
- {
- mtherr( "cosl", DOMAIN );
-#ifdef NANS
- return(NANL);
-#else
- return(0.0L);
-#endif
- }
-#endif
-
-/* make argument positive */
-sign = 1;
-if( x < 0 )
- x = -x;
-
-if( x > lossth )
- {
- mtherr( "cosl", TLOSS );
- return(0.0L);
- }
-
-y = floorl( x/PIO4L );
-z = ldexpl( y, -4 );
-z = floorl(z); /* integer part of y/8 */
-z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
-
-/* integer and fractional part modulo one octant */
-i = z;
-if( i & 1 ) /* map zeros to origin */
- {
- i += 1;
- y += 1.0L;
- }
-j = i & 07;
-if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
-
-if( j > 1 )
- sign = -sign;
-
-/* Extended precision modular arithmetic */
-z = ((x - y * DP1) - y * DP2) - y * DP3;
-
-zz = z * z;
-if( (j==1) || (j==2) )
- {
- y = z + z * (zz * polevll( zz, sincof, 6 ));
- }
-else
- {
- y = 1.0L - ldexpl(zz,-1) + zz * zz * polevll( zz, coscof, 6 );
- }
-
-if(sign < 0)
- y = -y;
-
-return(y);
-}