diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/pdtrl.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/ldouble/pdtrl.c')
-rw-r--r-- | libm/ldouble/pdtrl.c | 184 |
1 files changed, 0 insertions, 184 deletions
diff --git a/libm/ldouble/pdtrl.c b/libm/ldouble/pdtrl.c deleted file mode 100644 index 861b1d9ae..000000000 --- a/libm/ldouble/pdtrl.c +++ /dev/null @@ -1,184 +0,0 @@ -/* pdtrl.c - * - * Poisson distribution - * - * - * - * SYNOPSIS: - * - * int k; - * long double m, y, pdtrl(); - * - * y = pdtrl( k, m ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the first k terms of the Poisson - * distribution: - * - * k j - * -- -m m - * > e -- - * -- j! - * j=0 - * - * The terms are not summed directly; instead the incomplete - * gamma integral is employed, according to the relation - * - * y = pdtr( k, m ) = igamc( k+1, m ). - * - * The arguments must both be positive. - * - * - * - * ACCURACY: - * - * See igamc(). - * - */ -/* pdtrcl() - * - * Complemented poisson distribution - * - * - * - * SYNOPSIS: - * - * int k; - * long double m, y, pdtrcl(); - * - * y = pdtrcl( k, m ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the terms k+1 to infinity of the Poisson - * distribution: - * - * inf. j - * -- -m m - * > e -- - * -- j! - * j=k+1 - * - * The terms are not summed directly; instead the incomplete - * gamma integral is employed, according to the formula - * - * y = pdtrc( k, m ) = igam( k+1, m ). - * - * The arguments must both be positive. - * - * - * - * ACCURACY: - * - * See igam.c. - * - */ -/* pdtril() - * - * Inverse Poisson distribution - * - * - * - * SYNOPSIS: - * - * int k; - * long double m, y, pdtrl(); - * - * m = pdtril( k, y ); - * - * - * - * - * DESCRIPTION: - * - * Finds the Poisson variable x such that the integral - * from 0 to x of the Poisson density is equal to the - * given probability y. - * - * This is accomplished using the inverse gamma integral - * function and the relation - * - * m = igami( k+1, y ). - * - * - * - * - * ACCURACY: - * - * See igami.c. - * - * ERROR MESSAGES: - * - * message condition value returned - * pdtri domain y < 0 or y >= 1 0.0 - * k < 0 - * - */ - -/* -Cephes Math Library Release 2.3: March, 1995 -Copyright 1984, 1995 by Stephen L. Moshier -*/ - -#include <math.h> -#ifdef ANSIPROT -extern long double igaml ( long double, long double ); -extern long double igamcl ( long double, long double ); -extern long double igamil ( long double, long double ); -#else -long double igaml(), igamcl(), igamil(); -#endif - -long double pdtrcl( k, m ) -int k; -long double m; -{ -long double v; - -if( (k < 0) || (m <= 0.0L) ) - { - mtherr( "pdtrcl", DOMAIN ); - return( 0.0L ); - } -v = k+1; -return( igaml( v, m ) ); -} - - - -long double pdtrl( k, m ) -int k; -long double m; -{ -long double v; - -if( (k < 0) || (m <= 0.0L) ) - { - mtherr( "pdtrl", DOMAIN ); - return( 0.0L ); - } -v = k+1; -return( igamcl( v, m ) ); -} - - -long double pdtril( k, y ) -int k; -long double y; -{ -long double v; - -if( (k < 0) || (y < 0.0L) || (y >= 1.0L) ) - { - mtherr( "pdtril", DOMAIN ); - return( 0.0L ); - } -v = k+1; -v = igamil( v, y ); -return( v ); -} |