summaryrefslogtreecommitdiff
path: root/libm/ldouble/nbdtrl.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/nbdtrl.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/ldouble/nbdtrl.c')
-rw-r--r--libm/ldouble/nbdtrl.c197
1 files changed, 0 insertions, 197 deletions
diff --git a/libm/ldouble/nbdtrl.c b/libm/ldouble/nbdtrl.c
deleted file mode 100644
index 91593f544..000000000
--- a/libm/ldouble/nbdtrl.c
+++ /dev/null
@@ -1,197 +0,0 @@
-/* nbdtrl.c
- *
- * Negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * long double p, y, nbdtrl();
- *
- * y = nbdtrl( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the negative
- * binomial distribution:
- *
- * k
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * In a sequence of Bernoulli trials, this is the probability
- * that k or fewer failures precede the nth success.
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points (k,n,p) with k and n between 1 and 10,000
- * and p between 0 and 1.
- *
- * arithmetic domain # trials peak rms
- * Absolute error:
- * IEEE 0,10000 10000 9.8e-15 2.1e-16
- *
- */
- /* nbdtrcl.c
- *
- * Complemented negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * long double p, y, nbdtrcl();
- *
- * y = nbdtrcl( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 to infinity of the negative
- * binomial distribution:
- *
- * inf
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * See incbetl.c.
- *
- */
- /* nbdtril
- *
- * Functional inverse of negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * long double p, y, nbdtril();
- *
- * p = nbdtril( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the argument p such that nbdtr(k,n,p) is equal to y.
- *
- * ACCURACY:
- *
- * Tested at random points (a,b,y), with y between 0 and 1.
- *
- * a,b Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100
- * See also incbil.c.
- */
-
-/*
-Cephes Math Library Release 2.3: January,1995
-Copyright 1984, 1995 by Stephen L. Moshier
-*/
-
-#include <math.h>
-#ifdef ANSIPROT
-extern long double incbetl ( long double, long double, long double );
-extern long double powl ( long double, long double );
-extern long double incbil ( long double, long double, long double );
-#else
-long double incbetl(), powl(), incbil();
-#endif
-
-long double nbdtrcl( k, n, p )
-int k, n;
-long double p;
-{
-long double dk, dn;
-
-if( (p < 0.0L) || (p > 1.0L) )
- goto domerr;
-if( k < 0 )
- {
-domerr:
- mtherr( "nbdtrl", DOMAIN );
- return( 0.0L );
- }
-dn = n;
-if( k == 0 )
- return( 1.0L - powl( p, dn ) );
-
-dk = k+1;
-return( incbetl( dk, dn, 1.0L - p ) );
-}
-
-
-
-long double nbdtrl( k, n, p )
-int k, n;
-long double p;
-{
-long double dk, dn;
-
-if( (p < 0.0L) || (p > 1.0L) )
- goto domerr;
-if( k < 0 )
- {
-domerr:
- mtherr( "nbdtrl", DOMAIN );
- return( 0.0L );
- }
-dn = n;
-if( k == 0 )
- return( powl( p, dn ) );
-
-dk = k+1;
-return( incbetl( dn, dk, p ) );
-}
-
-
-long double nbdtril( k, n, p )
-int k, n;
-long double p;
-{
-long double dk, dn, w;
-
-if( (p < 0.0L) || (p > 1.0L) )
- goto domerr;
-if( k < 0 )
- {
-domerr:
- mtherr( "nbdtrl", DOMAIN );
- return( 0.0L );
- }
-dk = k+1;
-dn = n;
-w = incbil( dn, dk, p );
-return( w );
-}