diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/j0l.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/ldouble/j0l.c')
-rw-r--r-- | libm/ldouble/j0l.c | 541 |
1 files changed, 0 insertions, 541 deletions
diff --git a/libm/ldouble/j0l.c b/libm/ldouble/j0l.c deleted file mode 100644 index a30a65a4f..000000000 --- a/libm/ldouble/j0l.c +++ /dev/null @@ -1,541 +0,0 @@ -/* j0l.c - * - * Bessel function of order zero - * - * - * - * SYNOPSIS: - * - * long double x, y, j0l(); - * - * y = j0l( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of first kind, order zero of the argument. - * - * The domain is divided into the intervals [0, 9] and - * (9, infinity). In the first interval the rational approximation - * is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2), - * where r, s, t are the first three zeros of the function. - * In the second interval the expansion is in terms of the - * modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase P0(x) - * = atan(Y0(x)/J0(x)). M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x). - * The approximation to J0 is M0 * cos(x - pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)). - * - * - * ACCURACY: - * - * Absolute error: - * arithmetic domain # trials peak rms - * IEEE 0, 30 100000 2.8e-19 7.4e-20 - * - * - */ -/* y0l.c - * - * Bessel function of the second kind, order zero - * - * - * - * SYNOPSIS: - * - * double x, y, y0l(); - * - * y = y0l( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of the second kind, of order - * zero, of the argument. - * - * The domain is divided into the intervals [0, 5>, [5,9> and - * [9, infinity). In the first interval a rational approximation - * R(x) is employed to compute y0(x) = R(x) + 2/pi * log(x) * j0(x). - * - * In the second interval, the approximation is - * (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x) - * where p, q, r, s are zeros of y0(x). - * - * The third interval uses the same approximations to modulus - * and phase as j0(x), whence y0(x) = modulus * sin(phase). - * - * ACCURACY: - * - * Absolute error, when y0(x) < 1; else relative error: - * - * arithmetic domain # trials peak rms - * IEEE 0, 30 100000 3.4e-19 7.6e-20 - * - */ - -/* Copyright 1994 by Stephen L. Moshier (moshier@world.std.com). */ - -#include <math.h> - -/* -j0(x) = (x^2-JZ1)(x^2-JZ2)(x^2-JZ3)P(x**2)/Q(x**2) -0 <= x <= 9 -Relative error -n=7, d=8 -Peak error = 8.49e-22 -Relative error spread = 2.2e-3 -*/ -#if UNK -static long double j0n[8] = { - 1.296848754518641770562E0L, --3.239201943301299801018E3L, - 3.490002040733471400107E6L, --2.076797068740966813173E9L, - 7.283696461857171054941E11L, --1.487926133645291056388E14L, - 1.620335009643150402368E16L, --7.173386747526788067407E17L, -}; -static long double j0d[8] = { -/* 1.000000000000000000000E0L,*/ - 2.281959869176887763845E3L, - 2.910386840401647706984E6L, - 2.608400226578100610991E9L, - 1.752689035792859338860E12L, - 8.879132373286001289461E14L, - 3.265560832845194013669E17L, - 7.881340554308432241892E19L, - 9.466475654163919450528E21L, -}; -#endif -#if IBMPC -static short j0n[] = { -0xf759,0x4208,0x23d6,0xa5ff,0x3fff, XPD -0xa9a8,0xe62b,0x3b28,0xca73,0xc00a, XPD -0xfe10,0xb608,0x4829,0xd503,0x4014, XPD -0x008c,0x7b60,0xd119,0xf792,0xc01d, XPD -0x943a,0x69b7,0x36ca,0xa996,0x4026, XPD -0x1b0b,0x6331,0x7add,0x8753,0xc02e, XPD -0x4018,0xad26,0x71ba,0xe643,0x4034, XPD -0xb96c,0xc486,0xfb95,0x9f47,0xc03a, XPD -}; -static short j0d[] = { -/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/ -0xbdfe,0xc832,0x5b9f,0x8e9f,0x400a, XPD -0xe1a0,0x923f,0xcb5c,0xb1a2,0x4014, XPD -0x66d2,0x93fe,0x0762,0x9b79,0x401e, XPD -0xfed1,0x086d,0x3425,0xcc0a,0x4027, XPD -0x0841,0x8cb6,0x5a46,0xc9e3,0x4030, XPD -0x3d2c,0xed55,0x20e1,0x9105,0x4039, XPD -0xfdce,0xa4ca,0x2ed8,0x88b8,0x4041, XPD -0x00ac,0xfb2b,0x6f62,0x804b,0x4048, XPD -}; -#endif -#if MIEEE -static long j0n[24] = { -0x3fff0000,0xa5ff23d6,0x4208f759, -0xc00a0000,0xca733b28,0xe62ba9a8, -0x40140000,0xd5034829,0xb608fe10, -0xc01d0000,0xf792d119,0x7b60008c, -0x40260000,0xa99636ca,0x69b7943a, -0xc02e0000,0x87537add,0x63311b0b, -0x40340000,0xe64371ba,0xad264018, -0xc03a0000,0x9f47fb95,0xc486b96c, -}; -static long j0d[24] = { -/*0x3fff0000,0x80000000,0x00000000,*/ -0x400a0000,0x8e9f5b9f,0xc832bdfe, -0x40140000,0xb1a2cb5c,0x923fe1a0, -0x401e0000,0x9b790762,0x93fe66d2, -0x40270000,0xcc0a3425,0x086dfed1, -0x40300000,0xc9e35a46,0x8cb60841, -0x40390000,0x910520e1,0xed553d2c, -0x40410000,0x88b82ed8,0xa4cafdce, -0x40480000,0x804b6f62,0xfb2b00ac, -}; -#endif -/* -sqrt(j0^2(1/x^2) + y0^2(1/x^2)) = z P(z**2)/Q(z**2) -z(x) = 1/sqrt(x) -Relative error -n=7, d=7 -Peak error = 1.80e-20 -Relative error spread = 5.1e-2 -*/ -#if UNK -static long double modulusn[8] = { - 3.947542376069224461532E-1L, - 6.864682945702134624126E0L, - 1.021369773577974343844E1L, - 7.626141421290849630523E0L, - 2.842537511425216145635E0L, - 7.162842530423205720962E-1L, - 9.036664453160200052296E-2L, - 8.461833426898867839659E-3L, -}; -static long double modulusd[7] = { -/* 1.000000000000000000000E0L,*/ - 9.117176038171821115904E0L, - 1.301235226061478261481E1L, - 9.613002539386213788182E0L, - 3.569671060989910901903E0L, - 8.983920141407590632423E-1L, - 1.132577931332212304986E-1L, - 1.060533546154121770442E-2L, -}; -#endif -#if IBMPC -static short modulusn[] = { -0x8559,0xf552,0x3a38,0xca1d,0x3ffd, XPD -0x38a3,0xa663,0x7b91,0xdbab,0x4001, XPD -0xb343,0x2673,0x4e51,0xa36b,0x4002, XPD -0x5e4b,0xe3af,0x59bb,0xf409,0x4001, XPD -0xb1cd,0x4e5e,0x2274,0xb5ec,0x4000, XPD -0xcfe9,0x74e0,0x67a1,0xb75e,0x3ffe, XPD -0x6b78,0x4cc6,0x25b7,0xb912,0x3ffb, XPD -0xcb2b,0x4b73,0x8075,0x8aa3,0x3ff8, XPD -}; -static short modulusd[] = { -/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/ -0x4498,0x3d2a,0xf3fb,0x91df,0x4002, XPD -0x5e3d,0xb5f4,0x9848,0xd032,0x4002, XPD -0xb837,0x3075,0xdbc0,0x99ce,0x4002, XPD -0x775a,0x1b79,0x7d9c,0xe475,0x4000, XPD -0x7e3f,0xb8dd,0x04df,0xe5fd,0x3ffe, XPD -0xed5a,0x31cd,0xb3ac,0xe7f3,0x3ffb, XPD -0x8a83,0x1b80,0x003e,0xadc2,0x3ff8, XPD -}; -#endif -#if MIEEE -static long modulusn[24] = { -0x3ffd0000,0xca1d3a38,0xf5528559, -0x40010000,0xdbab7b91,0xa66338a3, -0x40020000,0xa36b4e51,0x2673b343, -0x40010000,0xf40959bb,0xe3af5e4b, -0x40000000,0xb5ec2274,0x4e5eb1cd, -0x3ffe0000,0xb75e67a1,0x74e0cfe9, -0x3ffb0000,0xb91225b7,0x4cc66b78, -0x3ff80000,0x8aa38075,0x4b73cb2b, -}; -static long modulusd[21] = { -/*0x3fff0000,0x80000000,0x00000000,*/ -0x40020000,0x91dff3fb,0x3d2a4498, -0x40020000,0xd0329848,0xb5f45e3d, -0x40020000,0x99cedbc0,0x3075b837, -0x40000000,0xe4757d9c,0x1b79775a, -0x3ffe0000,0xe5fd04df,0xb8dd7e3f, -0x3ffb0000,0xe7f3b3ac,0x31cded5a, -0x3ff80000,0xadc2003e,0x1b808a83, -}; -#endif -/* -atan(y0(x)/j0(x)) = x - pi/4 + x P(x**2)/Q(x**2) -Absolute error -n=5, d=6 -Peak error = 2.80e-21 -Relative error spread = 5.5e-1 -*/ -#if UNK -static long double phasen[6] = { --7.356766355393571519038E-1L, --5.001635199922493694706E-1L, --7.737323518141516881715E-2L, --3.998893155826990642730E-3L, --7.496317036829964150970E-5L, --4.290885090773112963542E-7L, -}; -static long double phased[6] = { -/* 1.000000000000000000000E0L,*/ - 7.377856408614376072745E0L, - 4.285043297797736118069E0L, - 6.348446472935245102890E-1L, - 3.229866782185025048457E-2L, - 6.014932317342190404134E-4L, - 3.432708072618490390095E-6L, -}; -#endif -#if IBMPC -static short phasen[] = { -0x5106,0x12a6,0x4dd2,0xbc55,0xbffe, XPD -0x1e30,0x04da,0xb769,0x800a,0xbffe, XPD -0x8d8a,0x84e7,0xdbd5,0x9e75,0xbffb, XPD -0xe514,0x8866,0x25a9,0x8309,0xbff7, XPD -0xdc17,0x325e,0x8baf,0x9d35,0xbff1, XPD -0x4c2f,0x2dd8,0x79c3,0xe65d,0xbfe9, XPD -}; -static short phased[] = { -/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/ -0xf3e9,0xb2a5,0x6652,0xec17,0x4001, XPD -0x4b69,0x3f87,0x131f,0x891f,0x4001, XPD -0x6f25,0x2a95,0x2dc6,0xa285,0x3ffe, XPD -0x37bf,0xfcc8,0x9b9f,0x844b,0x3ffa, XPD -0xac5c,0x4806,0x8709,0x9dad,0x3ff4, XPD -0x4c8c,0x2dd8,0x79c3,0xe65d,0x3fec, XPD -}; -#endif -#if MIEEE -static long phasen[18] = { -0xbffe0000,0xbc554dd2,0x12a65106, -0xbffe0000,0x800ab769,0x04da1e30, -0xbffb0000,0x9e75dbd5,0x84e78d8a, -0xbff70000,0x830925a9,0x8866e514, -0xbff10000,0x9d358baf,0x325edc17, -0xbfe90000,0xe65d79c3,0x2dd84c2f, -}; -static long phased[18] = { -/*0x3fff0000,0x80000000,0x00000000,*/ -0x40010000,0xec176652,0xb2a5f3e9, -0x40010000,0x891f131f,0x3f874b69, -0x3ffe0000,0xa2852dc6,0x2a956f25, -0x3ffa0000,0x844b9b9f,0xfcc837bf, -0x3ff40000,0x9dad8709,0x4806ac5c, -0x3fec0000,0xe65d79c3,0x2dd84c8c, -}; -#endif -#define JZ1 5.783185962946784521176L -#define JZ2 30.47126234366208639908L -#define JZ3 7.488700679069518344489e1L - -#define PIO4L 0.78539816339744830961566L -#ifdef ANSIPROT -extern long double sqrtl ( long double ); -extern long double fabsl ( long double ); -extern long double polevll ( long double, void *, int ); -extern long double p1evll ( long double, void *, int ); -extern long double cosl ( long double ); -extern long double sinl ( long double ); -extern long double logl ( long double ); -long double j0l ( long double ); -#else -long double sqrtl(), fabsl(), polevll(), p1evll(), cosl(), sinl(), logl(); -long double j0l(); -#endif - -long double j0l(x) -long double x; -{ -long double xx, y, z, modulus, phase; - -xx = x * x; -if( xx < 81.0L ) - { - y = (xx - JZ1) * (xx - JZ2) * (xx -JZ3); - y *= polevll( xx, j0n, 7 ) / p1evll( xx, j0d, 8 ); - return y; - } - -y = fabsl(x); -xx = 1.0/xx; -phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 ); - -z = 1.0/y; -modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 7 ); - -y = modulus * cosl( y - PIO4L + z*phase) / sqrtl(y); -return y; -} - - -/* -y0(x) = 2/pi * log(x) * j0(x) + P(z**2)/Q(z**2) -0 <= x <= 5 -Absolute error -n=7, d=7 -Peak error = 8.55e-22 -Relative error spread = 2.7e-1 -*/ -#if UNK -static long double y0n[8] = { - 1.556909814120445353691E4L, --1.464324149797947303151E7L, - 5.427926320587133391307E9L, --9.808510181632626683952E11L, - 8.747842804834934784972E13L, --3.461898868011666236539E15L, - 4.421767595991969611983E16L, --1.847183690384811186958E16L, -}; -static long double y0d[7] = { -/* 1.000000000000000000000E0L,*/ - 1.040792201755841697889E3L, - 6.256391154086099882302E5L, - 2.686702051957904669677E8L, - 8.630939306572281881328E10L, - 2.027480766502742538763E13L, - 3.167750475899536301562E15L, - 2.502813268068711844040E17L, -}; -#endif -#if IBMPC -static short y0n[] = { -0x126c,0x20be,0x647f,0xf344,0x400c, XPD -0x2ec0,0x7b95,0x297f,0xdf70,0xc016, XPD -0x2fdd,0x4b27,0xca98,0xa1c3,0x401f, XPD -0x3e3c,0xb343,0x46c9,0xe45f,0xc026, XPD -0xb219,0x37ba,0x5142,0x9f1f,0x402d, XPD -0x23c9,0x6b29,0x4244,0xc4c9,0xc032, XPD -0x501f,0x6264,0xbdf4,0x9d17,0x4036, XPD -0x5fbd,0x0171,0x135a,0x8340,0xc035, XPD -}; -static short y0d[] = { -/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/ -0x9057,0x7f25,0x59b7,0x8219,0x4009, XPD -0xd938,0xb6b2,0x71d8,0x98be,0x4012, XPD -0x97a4,0x90fa,0xa7e9,0x801c,0x401b, XPD -0x553b,0x4dc8,0x8695,0xa0c3,0x4023, XPD -0x6732,0x8c1b,0xc5ab,0x9384,0x402b, XPD -0x04d3,0xa629,0xd61d,0xb410,0x4032, XPD -0x241a,0x8f2b,0x629a,0xde4b,0x4038, XPD -}; -#endif -#if MIEEE -static long y0n[24] = { -0x400c0000,0xf344647f,0x20be126c, -0xc0160000,0xdf70297f,0x7b952ec0, -0x401f0000,0xa1c3ca98,0x4b272fdd, -0xc0260000,0xe45f46c9,0xb3433e3c, -0x402d0000,0x9f1f5142,0x37bab219, -0xc0320000,0xc4c94244,0x6b2923c9, -0x40360000,0x9d17bdf4,0x6264501f, -0xc0350000,0x8340135a,0x01715fbd, -}; -static long y0d[21] = { -/*0x3fff0000,0x80000000,0x00000000,*/ -0x40090000,0x821959b7,0x7f259057, -0x40120000,0x98be71d8,0xb6b2d938, -0x401b0000,0x801ca7e9,0x90fa97a4, -0x40230000,0xa0c38695,0x4dc8553b, -0x402b0000,0x9384c5ab,0x8c1b6732, -0x40320000,0xb410d61d,0xa62904d3, -0x40380000,0xde4b629a,0x8f2b241a, -}; -#endif -/* -y0(x) = (x-Y0Z1)(x-Y0Z2)(x-Y0Z3)(x-Y0Z4)P(x)/Q(x) -4.5 <= x <= 9 -Absolute error -n=9, d=9 -Peak error = 2.35e-20 -Relative error spread = 7.8e-13 -*/ -#if UNK -static long double y059n[10] = { - 2.368715538373384869796E-2L, --1.472923738545276751402E0L, - 2.525993724177105060507E1L, - 7.727403527387097461580E1L, --4.578271827238477598563E3L, - 7.051411242092171161986E3L, - 1.951120419910720443331E5L, - 6.515211089266670755622E5L, --1.164760792144532266855E5L, --5.566567444353735925323E5L, -}; -static long double y059d[9] = { -/* 1.000000000000000000000E0L,*/ --6.235501989189125881723E1L, - 2.224790285641017194158E3L, --5.103881883748705381186E4L, - 8.772616606054526158657E5L, --1.096162986826467060921E7L, - 1.083335477747278958468E8L, --7.045635226159434678833E8L, - 3.518324187204647941098E9L, - 1.173085288957116938494E9L, -}; -#endif -#if IBMPC -static short y059n[] = { -0x992f,0xab45,0x90b6,0xc20b,0x3ff9, XPD -0x1207,0x46ea,0xc3db,0xbc88,0xbfff, XPD -0x5504,0x035a,0x59fa,0xca14,0x4003, XPD -0xd5a3,0xf673,0x4e59,0x9a8c,0x4005, XPD -0x62e0,0xc25b,0x2cb3,0x8f12,0xc00b, XPD -0xe8fa,0x4b44,0x4a39,0xdc5b,0x400b, XPD -0x49e2,0xfb52,0x02af,0xbe8a,0x4010, XPD -0x8c07,0x29e3,0x11be,0x9f10,0x4012, XPD -0xfd54,0xb2fe,0x0a23,0xe37e,0xc00f, XPD -0xf90c,0x3510,0x0be9,0x87e7,0xc012, XPD -}; -static short y059d[] = { -/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/ -0xdebf,0xa468,0x8a55,0xf96b,0xc004, XPD -0xad09,0x8e6a,0xa502,0x8b0c,0x400a, XPD -0xa28c,0x5563,0xd19f,0xc75e,0xc00e, XPD -0xe8b6,0xd705,0xda91,0xd62c,0x4012, XPD -0xec8a,0x4697,0xddde,0xa742,0xc016, XPD -0x27ff,0xca92,0x3d78,0xcea1,0x4019, XPD -0xe26b,0x76b9,0x250a,0xa7fb,0xc01c, XPD -0xceb6,0x3463,0x5ddb,0xd1b5,0x401e, XPD -0x3b3b,0xea0b,0xb8d1,0x8bd7,0x401d, XPD -}; -#endif -#if MIEEE -static long y059n[30] = { -0x3ff90000,0xc20b90b6,0xab45992f, -0xbfff0000,0xbc88c3db,0x46ea1207, -0x40030000,0xca1459fa,0x035a5504, -0x40050000,0x9a8c4e59,0xf673d5a3, -0xc00b0000,0x8f122cb3,0xc25b62e0, -0x400b0000,0xdc5b4a39,0x4b44e8fa, -0x40100000,0xbe8a02af,0xfb5249e2, -0x40120000,0x9f1011be,0x29e38c07, -0xc00f0000,0xe37e0a23,0xb2fefd54, -0xc0120000,0x87e70be9,0x3510f90c, -}; -static long y059d[27] = { -/*0x3fff0000,0x80000000,0x00000000,*/ -0xc0040000,0xf96b8a55,0xa468debf, -0x400a0000,0x8b0ca502,0x8e6aad09, -0xc00e0000,0xc75ed19f,0x5563a28c, -0x40120000,0xd62cda91,0xd705e8b6, -0xc0160000,0xa742ddde,0x4697ec8a, -0x40190000,0xcea13d78,0xca9227ff, -0xc01c0000,0xa7fb250a,0x76b9e26b, -0x401e0000,0xd1b55ddb,0x3463ceb6, -0x401d0000,0x8bd7b8d1,0xea0b3b3b, -}; -#endif -#define TWOOPI 6.36619772367581343075535E-1L -#define Y0Z1 3.957678419314857868376e0L -#define Y0Z2 7.086051060301772697624e0L -#define Y0Z3 1.022234504349641701900e1L -#define Y0Z4 1.336109747387276347827e1L -/* #define MAXNUML 1.189731495357231765021e4932L */ -extern long double MAXNUML; - -long double y0l(x) -long double x; -{ -long double xx, y, z, modulus, phase; - -if( x < 0.0 ) - { - return (-MAXNUML); - } -xx = x * x; -if( xx < 81.0L ) - { - if( xx < 20.25L ) - { - y = TWOOPI * logl(x) * j0l(x); - y += polevll( xx, y0n, 7 ) / p1evll( xx, y0d, 7 ); - } - else - { - y = (x - Y0Z1)*(x - Y0Z2)*(x - Y0Z3)*(x - Y0Z4); - y *= polevll( x, y059n, 9 ) / p1evll( x, y059d, 9 ); - } - return y; - } - -y = fabsl(x); -xx = 1.0/xx; -phase = polevll( xx, phasen, 5 ) / p1evll( xx, phased, 6 ); - -z = 1.0/y; -modulus = polevll( z, modulusn, 7 ) / p1evll( z, modulusd, 7 ); - -y = modulus * sinl( y - PIO4L + z*phase) / sqrtl(y); -return y; -} |